Angular control of Advanced Virgo suspended benches

Michał Wąs for the DET and SBE team

LAPP/IN2P3 - Annecy

Suspended benches in Advanced Virgo

Support:

- photo-diodes
- quadrants
- wavefront sensors
- cameras,...
- read-out electronics

Angular control requirements - end of arm benches

- DC quadrant signals used to control the arm soft mode
- Beam angle/position
 ⇔ bench angle/shift
- Losses in arm < 10⁻³ ⇒ < 110 nrad of beam angle
 ⇒ < 33 nrad of bench angle (3 times better than test mass local controls achievement)

	RMS	@ 10 Hz
angle	$3 \times 10^{-8} \text{rad}$	$3 \times 10^{-15} \text{rad} / \sqrt{\text{Hz}}$
shift	2×10^{-5} m	$2 \times 10^{-12} \text{m}/\sqrt{\text{Hz}}$

 \Rightarrow shift requirements 3 order of magnitude easier \rightarrow focus on angle

Mantovani 2012, VIR-0101A-12

Bench suspension concept

- Pre-isolated double suspension (MultiSAS NIKHEF)
 - 1 inverted pendulum
 - 2 pendulums + vertical isolation GAS blade stages
- local controls: 2 LVDTs in 4 corners
 - ▶ Differential position sensor, sensitivity $\sim 1 \text{ nm}/\sqrt{\text{Hz}}$
 - Maxwell pair of coils Magnet actuator
- ⇒ 2 redundant signals: 1 horizontal, 1 vertical
 - → null combinations (stretching, twisting the bench)

double

Bench control scheme

- Translation control from the top stage
- Angular control on the bench
 - angular actuator & sensor⇒ between ground and bench

2 redundant sensors ⇒ sensor gain cross calibration

- ullet Sensors absolutely calibrated at \sim 10% level
- Assume perfect geometry (location, orientation of sensors)
- Cross-calibrated vertical sensors, cross-calibrated horizontal sensors
- Degree of freedom coupling at resonances is $\lesssim 10^{-3}$
- horizontal-vertical coupling $\sim 10^{-2} \Rightarrow$ geometry is not perfect

Is an imperfect sensor geometry a problem?

- Shifts: ground motion wrt static bench
- $\Rightarrow \sim 1\%$ coupling of ground motion to angle sensing
- → well below the locked spectrum ⇒ not a problem
 - Null combination is close to locked spectrum
 - ⇒ electronic noise at large offsets? (> 10⁶ above noise floor)

Closed loop performance - low frequency

- A few days of work
- Traditional approach of moving poles and zeros around until it works
- RMS is a factor 3-4 above specification (33 nrad) moderate microseismic

Closed loop performance - in band

- Traditional approach: adding low-passing once the low-frequency part looks ok
- Good for Yaw, needs improvement for Pitch
- Measurement done in air with airflow shaking the tower, should be better in vacuum
- Specification is $3 \times 10^{-15} \, \text{m}/\sqrt{\text{Hz}}$

How to get the remaining factor 3: global cost function

https://git.ligo.org/rana-adhikari/ModernControls/tree/master/OptimalFeedback/GlobalCostrols/tree/master/Opti

- Nice framework, highlights different aspects of a good loop
- Blindly optimize the loop using a cost function
- Starting from random or current filter
- Stuck at local minima solutions
 - no control, just let the system free
 - no stability, just put 3 poles at 0 Hz (phase looks good at unity gain)
- Cost function require lots of tuning
 - → not better than by hand filter tuning?
- ⇒ Not a magic solution ... yet?

How to get the remaining factor 3: better sensing

- Optical lever with long arm
 - ▶ Should have a $\times 10$ better sensing noise at $\sim 10^{-10} \, \text{m}/\sqrt{\text{Hz}}$
- Measure directly the angle between bench and end mirror
 - No issues with tower shaking
 - Bench follows the mirror, signal usable only well above 1 Hz?
 - ⇒ blend the signals and increase the gain
 - → figure out the coupled 3 body alignment of 2 cavity mirrors + bench → more complicated, no longer local control

Summary

- A simple angular sensing & control from the ground works
- Redundant sensors are useful
 - cross-calibration
 - understanding couplings
 - measuring sensing noise
- Brute force optimization might be useful
- Better sensing is possible but more complicated

$$\begin{pmatrix} \frac{X_{\text{QPD1}}}{W_{\text{QPD1}}} \\ \frac{X_{\text{QPD2}}}{W_{\text{QPD2}}} \end{pmatrix} = \begin{pmatrix} 85 & -1.05 \times 10^5 \\ 121 & -1.30 \times 10^5 \end{pmatrix} \begin{pmatrix} x \\ \theta \end{pmatrix}_{\text{bench}}$$

$$\begin{pmatrix} \frac{X_{\text{QPD1}}}{W_{\text{QPD2}}} \\ \frac{X_{\text{QPD2}}}{W_{\text{QPD2}}} \end{pmatrix} = \begin{pmatrix} 54 & -2.4 \times 10^4 \\ 88 & 2.9 \times 10^4 \end{pmatrix} \begin{pmatrix} x \\ \theta_- \end{pmatrix}_{\text{beam}}$$

$$\theta_+ = 0.6470\theta_{\text{IM}} - 0.7625\theta_{\text{EM}}$$

$$\theta_- = 0.7625\theta_{\text{IM}} + 0.6533\theta_{\text{EM}}$$

 $RMS(\theta_+) \sim 1 \, \mathrm{nrad}$

if bench locked to end mirror

$$\theta_{ ext{bench}} = \theta_{ ext{EM}} = -0.7594 heta_+ + 0.6444 heta_- \simeq 0.6444 heta_-$$

$$\begin{pmatrix} \frac{\textit{X}_{\text{QPD1}}}{\textit{W}_{\text{QPD1}}} \\ \frac{\textit{X}_{\text{QPD2}}}{\textit{W}_{\text{QPD2}}} \end{pmatrix} = \begin{pmatrix} 54 & -9.2 \times 10^4 \\ 88 & -5.5 \times 10^4 \end{pmatrix} \begin{pmatrix} \textit{x} \\ \theta_- \end{pmatrix}_{\text{beam}}$$

Locking the bench to the mirror might actually work, just amplifies the error signal for soft mode alignment

Free SNEB horizontal DoF - mSAS controlled

- TY (yaw) torsion pendulum resonance at 6.3 mHz
- ullet resonance cross-coupling $\sim 10^{-3}$
- sensing noise 10⁻⁹ m level
- anti-alias at 10 Hz

Free SNEB vertical DoF - mSAS controlled

- TX (pitch) resonance at 189 mHz
- TZ (roll) resonance at 163 mHz
- ullet TX/TZ resonance cross-coupling $\sim 10^{-4}$
- ullet TY cross-coupling is $\sim 10^{-2}$, don't know why

Apr 29 2016 20:00:00 UTC

SNEB TY angular control

- Angular requirements for end benches (VIR-0101A-12)
 - $ightharpoonup 3.3 imes 10^{-8} \, \text{rad rms}$
 - $3.3 \times 10^{-15} \, \text{rad} / \sqrt{\text{Hz}}$ above 10 Hz
- Current performance on TY (yaw) after a few hours of work
 - filter with $\sim 10^{-8}$ gain at 10 Hz
 - sensing resonances $\sim 10^{-7} \, \text{rad} / \sqrt{\text{Hz}}$
 - \Rightarrow loop reintroduce noise at $\sim 10^{-15} \, \text{rad} / \sqrt{\text{Hz}}$ level
 - ▶ lock RMS at 1.9×10^{-7} rad, factor 6 above specification
 - excess gain below 10 mHz

SNEB TX/TZ angular control

- Angular requirements for end benches (VIR-0101A-12)
 - $ightharpoonup 3.3 imes 10^{-8} \, \text{rad rms}$
 - ▶ $3.3 \times 10^{-15} \, \text{rad} / \sqrt{\text{Hz}}$ above 10 Hz
- Current performance on TX/TZ (pitch/roll)
 - ▶ lock RMS at 7×10^{-7} rad, factor 20 above specification
 - haven't worked on that loop yet
 - ► No translation (X, Y and Z) control
 - ⇒ Ground shakes and the bench is still

