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Deep Machine Learning?

 What problems do we want to solve which we
cannot do yet?

* Mystery noise, tilt-horizontal, angular noise, ...

* What problems are already solvable but quite
difficult?

* GGlobal feedback design, glitch classification

* Are there techniques out there”






Some Dreams

Use the flashing time series to learn how to lock the interferometer. Multiple
error signals linearized.

Use PEM signals to predict glitches
Array of accelerometers/microphones to synthesize the scattered light noise

Diagnose noisy states of interferometer before the operators. Send SMS to
appropriate scientist.

Predict imminent failure of facility systems with PEM + HVAC sensors.
(power lines, weather, HVAC vibrations)

Slow trends in backscatter or other couplings indicate device failures. (e.qg.
photodiodes, DACSs, wires, laser alignments)

poor operating decisions indicate operator is getting tired
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Google TensorFlow
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What ML techniques”

e Unsupervised Learning
e only has input data (no target)
e Supervised Learning (includes all of MS Azure)
* has both input and output (e.g. PEM & h(t))
* Reinforcement Learning
* given knowledge of desired output states

e algorithms learn how to move to desires based on inputs



Removing the Mystery Noise

Many Noise problems
eliminated

All linear regression
combinations checked

Now testing some bilinear
methods by brute force
creation of pseudo channels

Think we need more fully
nonlinear estimator
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Nonlinear Regression

Volterra (1890) series representation; expanded
by Wiener

peyond linear regression; includes ‘by-hand’
nonlinear terms (e.g. higher order polynomials)

kernel based methods, self generate basis

L1 & L2 norms used to reduce complexity /
sparseness



Early example of RL

Adaptive control of pulse phase in a chirped-pulse

amplifier
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Some Useful Links

hitp://usblogs.pwc.com/emerging-technology/
demystitying-machine-learning/

https://www.udacity.com/course/machine-learning--ud262

hitps://azure.microsoft.com/en-us/documentation/articles/
machine-learning-algorithm-choice/

http://openclassroom.stanford.edu/MainFolder/
CoursePage.php?course=Machinel earning

https://www.quora.com/What-is-the-difference-between-
L1-and-L 2-regularization
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