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Outline 

•  Design concept and sensitivity goal 
•  Crystalline silicon test masses 
•  Cooling to 123 K 
•  Suspensions 



Voyager Design Concept 
•  Crystalline silicon test masses at 123 K 

–  Low mechanical loss + vanishing thermal expansion 
=> improved thermal noise 

–  High thermal conductivity + vanishing thermal expansion 
=> reduced thermal lensing (and improved shot noise) 

–  Efficient radiative cooling (with special coatings) 
=> relaxed constraints on optical power & suspensions 

–  Large enough substrates available (45 cm, 140-200 kg) 
 

•  Checking the details 
–  Verify silicon optical properties & noise 
–  High emissivity coatings => thermal noise 
–  Heat shield vibrational couplings (scattered light, Newtonian?) 



Voyager Design Concept 
•  Optical technologies: lasers, detectors, coatings, 

squeezers 
–  New wavelength (1.5-2 µm) 
–  Coating absorption important for heat budget 

•  Suspensions 
–  aLIGO levels of isolation and thermal noise considered 

sufficient 
–  What’s new? Heavier silicon test masses & thermal gradient 
–  Monolithic cold silicon ribbons vs. “hybrid” silica fibers 

•  Vacuum envelope, seismic isolation unchanged from 
aLIGO 
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Growing Crystalline Silicon 

•  48 cm ingots commercially 
grown via Czochralski process 

•  Main impurity is oxygen (from 
silica crucible, 3x1017/cm3) 

•  B field during growth to 
suppress convection, limit 
oxygen transport 

•  Radial & axial gradients in 
composition 

•  Resistivity up to several kΩ cm 



Absorption in the Test Mass 
•  Input test mass thermal budget: want 20 ppm/cm or 

better 
•  Impurities can contribute free carriers 

=> absorption 
–  Numerous theoretical models, Drude being 

the simplest 
–  Drude free carrier absorption scales as: 
λ2 (n / µ) 
(where n = carrier density, µ = carrier mobility) 

–  Resistivity scales as: 1 / (n µ) 
•  Effect of oxygen depends on how it is incorporated 

–  Interstitial oxygen does not change the resistivity 
–  Electron “donor” states of oxygen are also possible 
–  Donors are created and annihilated via heat treatment 

(which can also precipitate SiO2) 
•  Scaling from previous measurements, expect 

few kΩ cm resistivity is OK 

Jalali et al, OPN June 2009 



Experiments on Czochralski Silicon 

•  Procured silicon “slugs” for testing 
–  Disks 10 mm thick x 200 mm diameter, 

cut from magnetic-Czochralski grown 
ingots 

–  Undoped and high resistivity ~4 kΩ cm 
•  Many properties to be investigated 

–  Absorption 
–  Scattering 
–  Birefringence 
–  Mechanical loss 
–  Impurity concentration 

•  Check dependence on T, λ, location in 
ingot, heat treatment… 



Absorption: 
Experimental Setup 

Galvo mounted mirror 

Sample at near normal 
incidence to pump 

QPD 

probe 

Low pass filters 

Lockin amplifier 

~ 

pump (1550 nm) 

Interaction length ~ n wp / sin θ  

θ 

Position modulated photothermal deflection 

Source: Angus Bell, G1600538 

A. Markosyan, A. Bell 



Very Low Absorption 
in Czochralski Silicon 
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Very Low Absorption 
in Czochralski Silicon 
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Thermal Equilibrium 
•  Heat In 

–  Coating absorption 
3 W (3 MW x 1 ppm) 

–  Substrate absorption 
5 W (6 kW x 20 ppm/cm x 40 cm) 

–  Conduction through fibers 
(warm PUM) negligible 

–  Radiation from beam tube 
negligible 

•  Heat Out 
–  Radiative coupling to 80 K shield 

10 W 
–  Conduction through fibers 

(cold PUM) negligible 
ebarrel = 0.95  eHR, eAR = 0.75 
Tshield = 80 K  Pabs = 10 W 
wbeam = 8 cm 

LIGO-T1400226-v7

FIGURE 6: Temperature gradient of silicon test mass. Heating from environment and 10 W ab-
sorbed by Gaussian laser beam on HR surface. Radiative cooling to an 80 K cold shroud
via the mirror barrel surfaces (✏= 0.95) and through the HR and AR faces. Emissivity
of HR and AR faces assumed to be 0.75 as an initial guess. Mirror diameter = 45 cm,
thickness = 40 cm, and heat shield temperature = 80 K
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Temperature in Si ETM 
(10 W absorbed at surface) 

Source: T1400226-v7 



Vib. isolated optics table 
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Cryogenics for Voyager 



Vibration isolated test 
mass shield, 80 K Suspended beam tube 

shield, 80 K 

Gate valve 
Gate valve 

Transmitted  
beam shield 

Vibration isolated 
optics table 

Source: Brett Shapiro, G1600766 

Cryogenics for Voyager 



Cryo Prototype at Stanford 
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Heat Switch for Rapid Cooldown 

LIGO-T1400226-v7

Test	mass	

thermally	conduc1ve	
plate	with	variable	gap	

Front	view	 Perspec1ve	view	

heat	shield	
heat	shield	

FIGURE 34: Sketch of a possible cold link design. The cold link is thermally connected to the 80 K
heat shield and surrounds the top of the barrel with a small gap. The gap between the
plate and test mass is variable to engage and disengage the cooling. Some exchange
gas from 0.01 torr to 0.1 torr will thermally bridge the gap during cooldown.
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Source: T1400226-v7 

•  Could we use a nearby 
cold plate and a little 
exchange gas to reach 
123 K in a day? 

•  Controllable gap and gas 
pressure set the strength 
of the thermal link 

LIGO-T1400226-v7
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FIGURE 35: Photo of a prototype cold link at Stanford University. It consists of a liquid nitrogen
pipe that sits above the top of the test mass barrel. The gap between the cold link and
the test mass is adjustable to engage and disengage the cooling. The cold link has
numerous small flexures to make as many contacts with the surface of the test mass
as possible while the cold link is engaged.
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Black Barrel Coatings 

•  Bare silicon emissivity ~0.1 
=> 0.95 with Acktar Black 

•  Negligible thermal noise 
φAcktar ≈ 2x10-3 

YAcktar ≈ 10 GPa 
•  Would allow ~10 W heat 

extraction at 123K 
•  Alternatives: Vantablack, 

GSFC “Blacker Than Black” 
nanotube coatings 
 

Source: Matt Abernathy et al, P1500242 



Heat Shield Scatter Estimation 

LIGO-T1400226-v7
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FIGURE 10: Estimate of the scattered light noise from the heat shield. The input noises are the ISI
requirement curve and OSEM-like displacement noise for the test mass shield, and
the beam tube vibration for the beam tube and cryo pump shields. No vibration from
the cryogenics or thermal straps are included.
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Suspensions 

•  Cold silicon ribbons? 
–  Better thermal noise 
–  Fabrication challenge? 
–  Variable tensile 

strength/loss/surface 
quality 

•  “Hybrid” silica fibers 
–  Incomplete thermoelastic 

cancellation 
–  Thermal gradient in fiber 
–  Have to bond with silicon 

LIGO-T1400226-v7
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FIGURE 7: Layout of the ETM suspension in the cold PUM configuration with the cryogenic
cooling elements. A soft, thick, copper braid is used to conductively cool the black/gold
heat shield to 80 K. Thinner and softer braids can optionally be used to cool the reaction
masses, compensation plates, and penultimate masses. Sensors and actuators can also
optionally be used to actively isolate the shield. A separate heat shield that hangs
inside the beam tube is not shown here.
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FIGURE 8: Layout of the ETM suspension in the warm PUM configuration with the cryogenic
cooling elements. A soft, thick, copper braid is used to conductively cool the black/gold
heat shield to 80 K. Thinner and softer braids can optionally be used to cool the reaction
masses, compensation plates, and penultimate masses. Sensors and actuators can also
optionally be used to actively isolate the shield. A separate heat shield that hangs
inside the beam tube is not shown here.
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Summary 

•  123 K silicon offers a broadband sensitivity 
enhancement within today’s facilities 

•  Very low absorption is available in large 
silicon crystals 

•  Thermal noise/scatter from cryo system 
should be tolerably small 

•  Monolithic suspension, or “hybrid”? 
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Silicon absorption 
measurements 

•  Ingots polished with 
diamond slurry and 
pitch lap 

•  Consistently gives 
~0.1% absorption 
at the surface 

•  Polishers uses it as 
it more easily gives 
good flatness over 
4” diameter 

1550 nm absorption 

Source: Angus Bell, G1600538 23 



Some Plots 



Carrier density noise 

Visit in Oct 2014 by D. Heinert 
(Jena) 

 
noise was determined to be 

insignificant contribution to 
noise 

 
Thermorefractive noise in ITM 

is close, but not dominant 

Rana, LVC 2015 Budapest 



Suspensions 

–  Isolation: mass distribution, blades 
– Thermal noise: fiber vs. ribbon 
– Where to put the temperature gradient 
– Fabrication material, aspect ratio 


