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Outline

* Design concept and sensitivity goal
e Crystalline silicon test masses
 Coolingto 123 K

* Suspensions




Voyager Desigh Concept

e Crystalline silicon test masses at 123 K

Low mechanical loss + vanishing thermal expansion
=> improved thermal noise

High thermal conductivity + vanishing thermal expansion
=> reduced thermal lensing (and improved shot noise)

Efficient radiative cooling (with special coatings)
=> relaxed constraints on optical power & suspensions

Large enough substrates available (45 cm, 140-200 kg)

* Checking the details
— Verify silicon optical properties & noise

High emissivity coatings => thermal noise
Heat shield vibrational couplings (scattered light, Newtonian?)



Voyager Desigh Concept

e Optical technologies: lasers, detectors, coatings,
squeezers

— New wavelength (1.5-2 um)
— Coating absorption important for heat budget

e Suspensions

— aLIGO levels of isolation and thermal noise considered
sufficient

— What's new? Heavier silicon test masses & thermal gradient
— Monolithic cold silicon ribbons vs. “hybrid” silica fibers

* Vacuum envelope, seismic isolation unchanged from
aLIGO
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Growing Crystalline Silicon

48 cm ingots commercially
grown via Czochralski process

* Main impurity is oxygen (from
silica crucible, 3x1017/cm?3)

* B field during growth to

suppress convection, limit
oxygen transport

- Radial & axial gradients in -
composition — " i
* Resistivity up to several kQ cm Sh- -
IRctsu
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Absorption in the Test Mass

* Input test mass thermal budget: want 20 ppm/cm or

better
* Impurities can contribute free carriers o AAP };r;;;a;gg
=> absorption .  Phonens S ’
— Numerous theoretical models, Drude being g " | }Two_%wn
the simplest § Absorption
— Drude free carrier absorption scales as: § w |
A2 (n/ u)
(where n = carrier density, y = carrier mobility)
— Resistivity scalesas: 1/ (n ) Crystal Momentum

« Effect of oxygen depends on how it is incorporated Jelall etal, OFN June 2009

— Interstitial oxygen does not change the resistivity
— Electron “donor” states of oxygen are also possible

— Donors are created and annihilated via heat treatment
(which can also precipitate SiO,)

e Scaling from previous measurements, expect
few kQ cm resistivity is OK



Experiments on Czochralski Silicon

* Procured silicon “slugs” for testing

— Disks 10 mm thick x 200 mm diameter,
cut from magnetic-Czochralski grown
ingots

— Undoped and high resistivity ~4 kQQ cm
* Many properties to be investigated

— Absorption

— Scattering

— Birefringence

— Mechanical loss

— Impurity concentration

 Check dependence on T, A, location in
ingot, heat treatment... Shlﬁw‘_tsu




Absorption: LYWL oy
Experimental Setup g i HEl e

Sample at near normal

incidence to pump Lockin amplifier

. probe .

Low pass filters

Galvo mounted mirror

N
pump (1550 nm)

QPD

Interaction length ~n w,/ sin &

Source: Angus Bell, G1600538
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Thermal EqUiIibrium (10 W absorbed at surface)

e Heatln

— Coating absorption
SW(EMWx1ppm)

— Substrate absorption
5W (6 kW x 20 ppm/cm x 40 cm)

— Conduction through fibers
(warm PUM) negligible

— Radiation from beam tube
negligible

* Heat Out

— Radiative coupling to 80 K shield
10 W

— Conduction through fibers
(cold PUM) negligible

Source: T1400226-v7
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Cryogenics for Voyager

<«—> Relative displacement sensors

<> Actuators

Blade
springs

Vacuum
chamber

~ 900 mm dia

80 K baffled beam tube
shield

i |

10 m

i

77 K outer
shield

Cu braid

80 K
inner

124 K test mass

shjeld




Cryogenics for Voyager

Vibration isolated

Gate valve optics table
Gate valve
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~ Transmitted
beam shield

Vibration isolated test
Suspended beam tube mass shield, 80 K
shield, 80 K

Source: Brett Shapiro, G1600766
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Heat Switch for Rapid Cooldown

heat shield thermally conductive
plate with variable gap heat shield

 Could we use a nearby
cold plate and a little
exchange gas to reach
123 K in a day?

* Controllable gap and gas
pressure set the strength
of the thermal link

cold link
with LN,

S \ .
W variable
N gap

flexure
‘point’
contacts
1kg Si

test
mass

Source: T1400226-v7



Black Barrel Coatings

e Bare silicon emissivity ~0.1
=> (0.95 with Acktar Black

* Negligible thermal noise
(pAcktar ~ 2X1O_3
Yacutar = 10 GPa

e Would allow ~10 W heat
extraction at 123K

* Alternatives: Vantablack,
GSFC “Blacker Than Black”
nanotube coatings

Source: Matt Abernathy et al, P1500242



Heat Shield Scatter Estimation

Test mass heat shield scattered light noise for 4 testmasses
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Suspensions

e Cold silicon ribbons?
— Better thermal noise
— Fabrication challenge?

— Variable tensile
strength/loss/surface
quality

Cantilever
springs

4 km beam _—
5 tube
124 K Si optic 80 K shield &
lower sus cage

* “Hybrid” silica fibers

— Incomplete thermoelastic
cancellation

— Thermal gradient in fiber
— Have to bond with silicon

293 K upper sus

Cantilever
springs

4 km beam
tube

124 K Si optic 80 K shield &

lower sus cage




Summary

123 K silicon offers a broadband sensitivity
enhancement within today’s facilities

* Very low absorption is available in large
silicon crystals

 Thermal noise/scatter from cryo system
should be tolerably small

* Monolithic suspension, or “hybrid”?
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] Silicon absorption
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Thermal Conductivity [W/(m K)]

Some Plots
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Carrier density noise
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Suspensions

— Isolation: mass distribution, blades

— Thermal noise: fiber vs. ribbon

— Where to put the temperature gradient
— Fabrication material, aspect ratio



