Cryogenic Considerations for LIGO Voyager

Christopher Wipf, LIGO-Caltech for the Voyager Team GWADW 2016 in Elba

Outline

- Design concept and sensitivity goal
- Crystalline silicon test masses
- Cooling to 123 K
- Suspensions

Voyager Design Concept

- Crystalline silicon test masses at 123 K
 - Low mechanical loss + vanishing thermal expansion
 => improved thermal noise
 - High thermal conductivity + vanishing thermal expansion
 reduced thermal lensing (and improved shot noise)
 - Efficient radiative cooling (with special coatings)
 relaxed constraints on optical power & suspensions
 - Large enough substrates available (45 cm, 140-200 kg)
- Checking the details
 - Verify silicon optical properties & noise
 - High emissivity coatings => thermal noise
 - Heat shield vibrational couplings (scattered light, Newtonian?)

Voyager Design Concept

- Optical technologies: lasers, detectors, coatings, squeezers
 - New wavelength (1.5-2 μm)
 - Coating absorption important for heat budget
- Suspensions
 - aLIGO levels of isolation and thermal noise considered sufficient
 - What's new? Heavier silicon test masses & thermal gradient
 - Monolithic cold silicon ribbons vs. "hybrid" silica fibers
- Vacuum envelope, seismic isolation unchanged from aLIGO

Growing Crystalline Silicon

- 48 cm ingots commercially grown via Czochralski process
- Main impurity is oxygen (from silica crucible, 3x10¹⁷/cm³)
- B field during growth to suppress convection, limit oxygen transport
- Radial & axial gradients in composition
- Resistivity up to several $k\Omega$ cm

Absorption in the Test Mass

- Input test mass thermal budget: want 20 ppm/cm or better
- Impurities can contribute free carriers
 => absorption
 - Numerous theoretical models, Drude being the simplest
 - Drude free carrier absorption scales as: $\lambda^2 (n / \mu)$ (where *n* = carrier density, μ = carrier mobility)
 - Resistivity scales as: $1 / (n \mu)$
- Effect of oxygen depends on how it is incorporated
 - Interstitial oxygen does not change the resistivity
 - Electron "donor" states of oxygen are also possible
 - Donors are created and annihilated via heat treatment (which can also precipitate SiO₂)
- Scaling from previous measurements, expect few $k\Omega$ cm resistivity is OK

Experiments on Czochralski Silicon

- Procured silicon "slugs" for testing
 - Disks 10 mm thick x 200 mm diameter, cut from magnetic-Czochralski grown ingots
 - Undoped and high resistivity ~4 k Ω cm
- Many properties to be investigated
 - Absorption
 - Scattering
 - Birefringence
 - Mechanical loss
 - Impurity concentration
- Check dependence on T, λ , location in ingot, heat treatment...

Absorption: Experimental Setup

A. Markosyan, A. Bell

Very Low Absorption in Czochralski Silicon

A. Markosyan, A. Bell

Very Low Absorption in Czochralski Silicon

A. Markosyan, A. Bell

Thermal Equilibrium

• Heat In

- Coating absorption
 3 W (3 MW x 1 ppm)
- Substrate absorption
 5 W (6 kW x 20 ppm/cm x 40 cm)
- Conduction through fibers (warm PUM) negligible
- Radiation from beam tube negligible
- Heat Out
 - Radiative coupling to 80 K shield 10 W
 - Conduction through fibers (cold PUM) negligible

Source: T1400226-v7

Temperature in Si ETM

Cryogenics for Voyager

Cryogenics for Voyager

Source: Brett Shapiro, G1600766

Cryo Prototype at Stanford

Source: Brett Shapiro, G1600766

Heat Switch for Rapid Cooldown

- Could we use a nearby cold plate and a little exchange gas to reach 123 K in a day?
- Controllable gap and gas pressure set the strength of the thermal link

test mass

Black Barrel Coatings

- Bare silicon emissivity ~0.1
 => 0.95 with Acktar Black
- Would allow ~10 W heat extraction at 123K
- Alternatives: Vantablack, GSFC "Blacker Than Black" nanotube coatings

Heat Shield Scatter Estimation

Source: T1400226-v7

Suspensions

- Cold silicon ribbons?
 - Better thermal noise
 - Fabrication challenge?
 - Variable tensile strength/loss/surface quality

- "Hybrid" silica fibers
 - Incomplete thermoelastic cancellation
 - Thermal gradient in fiber
 - Have to bond with silicon

Summary

- 123 K silicon offers a broadband sensitivity enhancement within today's facilities
- Very low absorption is available in large silicon crystals
- Thermal noise/scatter from cryo system should be tolerably small
- Monolithic suspension, or "hybrid"?

Silicon absorption measurements

- UNIVERSITY of GLASGOW
- Ingots polished with diamond slurry and pitch lap
- Consistently gives
 ~0.1% absorption
 at the surface
- Polishers uses it as it more easily gives good flatness over 4" diameter

Source: Angus Bell, G1600538

Carrier density noise

Visit in Oct 2014 by D. Heinert (Jena)

noise was determined to be insignificant contribution to noise

Thermorefractive noise in ITM is close, but not dominant

Suspensions

- Isolation: mass distribution, blades
- Thermal noise: fiber vs. ribbon
- Where to put the temperature gradient
- Fabrication material, aspect ratio