

UNIVERSITY OF BIRMINGHAM

Low-frequency Sensors, 10mHz to 10Hz

A quick summary of some current projects and design considerations

Conor Mow-Lowry

Including substantial work by Sam Cooper

Motivation

Inertial sensors: Lock acquisition and duty cycle.

Position sensors: Improved suspension damping, reduced 10Hz+ noise injection, simpler global controls.

Low-frequency GW experiments such as TOBAs or Atom interferometers need (way) more low-f isolation.

Geophysics? Space-based accelerometers?

My personal inspiration

Sensor blending with noisy sensors

A. Wanner et al., Class. Quantum Grav. 29, 245007 (2012)

Design considerations with inertial sensors

- 'Ideal' sensors are limited by suspension thermal noise: roughly white in force noise (1/f^{2-ish} in inertial-equivalent displacement). More bending material = more noise.
- g is large. Vertical sensors need to be strong, which needs lots of material. Hard to get low resonant frequencies.
- White readout noise becomes 1/f² below resonance.
- Horizontal sensors couple tilt like g/w^2 , but low-loss antisprings make good low-f sensors.

DoF design considerations

DoF	Туре	f ₀ (Hz)	Design considerations
Z	Mass-spring	~1	Thermal noise, low-f readout noise (1/f²), very low cross-coupling
Z	Anti-Spring	~0.2	Huge thermal noise
X,Y	Pendulum	1	Readout noise (1/f²), tilt-coupling (1/f²)
X,Y	Watt's linkage	~0.1	Tilt-coupling (1/f²), low thermal noise
RX,RY	Differential-Z	~1	Small signal, large common mode, huge low-f readout noise (effectively 1/f ⁴)
RX,RY	BRS	~0.01	Small signal, Mechanical tuning and drift/control, low-f readout (effectively 1/f²)
RZ	Torsion balance	~0.001	Tiny signal, large RMS rotation
RZ	Differential-X,Y	~0.1	Tiny signal, tilt-rejection

Some randomly sampled work in the LSC

Tilt-coupling is seeing quite some attention,

Tilt-free seismometry (Dooley)

BRS for tilt-correction (Venkateswara)

Differential-Z for closed-loop (Mow-Lowry)

Interferometric readout

Watt's linkage with Michelson (van Heijningen)

EUCLID-type readout (Mow-Lowry)

Thermal noise via exotic springs (not discussed here)

Most remaining slides are courtesy of Kate, Krishna, and Joris.

Tilt versus Horizontal displacement

 Conventional seismometers and tiltmeters cannot differentiate between horizontal displacement and ground tilt.

 $\delta \mathbf{x} \propto \mathbf{a}_{x}$

Tilt response to horizontal displacement response for all seismometers = $-g/\omega^2$

⇒ Tilt is confused with horizontal motion at low frequencies (below ~ 0.1 Hz).

Solution: Inertial rotation sensors, Tilt-free seismometers or ring-laser gyroscopes...

Two different approaches

Measuring tilt

Independently measure ground tilt and subtract it.

Filtering tilt

Mechanically filter tilt from reaching the seismometer in the first place

Example results: tilt-filtering demonstration

Matichard et al. P1400061

Source: Kate Dooley

Outlook and message

- Build prototype suspension and measure transfer functions using commercial seismometer
- Conduct huddle test
- Build and test custom seismometer (inverted pendulum with Michelson readout)

Sensitivity comparison

Improving ISI performance with BRS

(<u>LHO aLOG 17729</u>)

Schematic

Compact-BRS

New features

- 1. <u>Cross Shape</u> (~0 quadrupole moment) ensures first order insensitivity to gravity gradient noise.
- 2. New compact interferometric readout with ~10X better sensitivity.
- 3. Kinematic seat for <u>transportation/repositioning</u> (?)

Inertial Sensors with Interferometers

Non-contact, low-noise readout Michelson or Fabry-Perot

- Extreme sensitivity
- Small dynamic range (closed loop required)
- Lots of experience in the field

Homodyne phasemeters (e.g. EUCLID)

- Huge dynamic range (~cm range, ~cm/second speed)
- (Potentially) High sensitivity (10⁻¹⁴m/rt(Hz))
- No actuators required (magnets, wires, cables)
- Excellent calibration (fixed to the optical wavelength)

Nikhef interferometric Watt's linkage

Interferometer testing

Spectra on undamped Multi-SAS bench

Design aim for GS-13 readout

Homodyne Quadrature Interferometer

Homodyne Quadrature Interferometer

HoQI trial measurement (in vacuum)

Future inertial sensor work

There are many topics that still need much more work here, just a few include:

- New materials,
- Spurious forces on home-made sensors,
- UHV compatibility,
- Non-mechanical devices (eg SCGs)

Homodyne Quadrature Interferometer

Homodyne Quadrature Interferometer

- Sin vs Cos plot creates a circle
- The centre is shifted to 0,0
- Simple arctangent (or a cordic engine) reads out the optical phase, over multiple fringes
- This repeating pattern is our Lissajous figure.
- Roughly speaking, deviations from a circle will create non-linearities in the readout.

HoQI Experimental Data

HoQI Experimental Data

Homodyne Quadrature Interferometer

Homodyne Quadrature Interferometer

Stage 1 Motion

Amplitude Spectral Density

