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®* Formulate suitable target problems including metrics or requirements g

® Rana et. al. have identified some suitable problems

K PLAN OF ATTACK ... perhaps obvious /

® Hope to discuss & expand target problem list in this workshop
O

®* Create or identify a ‘test bed’

®* A model or simulation that represents the plant and its disturbances, including the variations which

warrant adaptation, and /or

® A physical emulator (e.g. LASTI or 40m Lab systems)

® Identify a suitable ML technique(s)

® Discuss experience from the GW community in application of ML techniques in this workshop,

e.g. DetChar has applied ML techniques — are they applicable to our control problems?
® Pair up problems & ML techniques with volunteers

® Continue pursuit through the Control Systems Working Group (CSWG) monthly meetings

* All GW community members are encouraged to participate
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SOME THOUGHTS REGARDING MACHINE LEARNING (ML)

®* ML is most often not applied to ® When applied to control, it is

control problems generally for the purpose of

* Classification / Clustering * Adaptation of control parameters
* Image recognition / Pattern recognition * System ldentification
* Data mining / Deep Learning ®* Few examples of application to

* Optimization / Minimization complex MIMO systems

Towards Automated Control C a": e Ch
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INTRODUCTION:
The manual tuning of hundred control loops can become a delay in

. . ) Reduce In-Band Error Signal
interferometer commissioning. We present here an effort towards a 5

technique to address this delay. Suppress error signal in the control band. Use RMS in in the control

band. Minimize ratio of suppressed error signal’s RMS to free

Ultimately, we would like to formulate an optimal control problem . .
: running RMS.

that allows us to incorporate arbitrary information about the controller
requirements and constraints (inspired by [1]). Qur current approach
- Free running error signal

LGO-G1601212 canbe divided into three steps:

Suppressed with AC-coupled loop

* 1
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¢ Write a cost function that incorporates the goals and requirements

ude spectral density

for the particular control task.
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® Reference: “Fast machine-learning online optimization of ultra-cold-atom experiments”, P. B. Wigley, et. al.,

Nature, Scientific Reports, 2016; 6: 25890 DOI: 10.1038/srep25890

K EXAMPLE: BOSE-EINSTEIN CONDENSATE (BEC) MACHINE

®* Machine-learning online optimization (MLOO)
® Real time optimization
®* Creates an internal statistical model (fits to previous observations)

® Models the experiment using a Gaussian process (GP)

® Chooses to do future experiments that will best refine its model, making it an automation of scientific method (Oh

No! We'll all be out of jobsl)
ML (red and blue) optimizes faster than Nelder-Mead (black).
Eliminated a parameter based on ML model & convergence improves (red).
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® Concept developed by Widrow & Walach (~1971 - 1986) and then married to neural networks (late 80s,
early 90s) (

\ ADAPTIVE INVERSE CONTROL CONCEPT

Adapt the controller (adjust its parameters) until the error is small,
i.e. until the controller is the inverse of the plant

O

The adaptation algorithm uses an objective such as minimizing the mean square error

®* The adaptation is a form of feedforward control

If the plant has delays, then the controller must be a predictor

If the plant is non-minimum phase, then the inverse controller would be unstable. However one can introduce
a suitable delay and realize a delayed plant inverse

Command input Plant input Plant output
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\ sensor noise are not
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WITH PLANT NOISE AND DISTURBANCE CANCELING /

* A reference model is chosen to have the desired system response

K\o MODEL-REFERENCE ADAPTIVE INVERSE CONTROL c/

® Plant noise and disturbances are cancelled by feedback through an inverse plant

model
Plant
[ : : disturbance peisel
Requires 3 adaptation processes noise
. . . Command * l Plant
® objective function must be chosen input + byt o
oo < :
carefully to whiten and /or filter the . p ?
error PLANT ]
‘ MODEL
7
® Inverted plants are notoriously non- ADAPTIVE ~
ALGORITHM INVERSE
robust due to plant variation = the

T —————1 PLANT <

MODEL error +
7
adaptation rate must be fast Z

REFERENCE
MODEL

>




\) EXAMPLE: MIMO APPLICATION OF ADAPTIVE-NOISE /
CANCELATION

®* Beam Trajectory control for the SLC (SLAC Linear Collider)
Ref: B. Widrow, E. Walach, Adaptive Inverse Control, 1996.

® Beam centering
® Passive: set of 300 Quadrupole electromagnets focus the beam

®* Quasi-DC dipole electromagnets (V & H sets near each quadrupole)
steer the beam
* Capacitive Beam Position Monitors (set of 300) used to calculate drive

amplitudes for the quasi-DC dipole magnets

® 20 Steering feedback loops, in sequence

® Each controls measures & controls 8 states: position & angle, in V & H,

for e and et

® 20 Hz sample & update rate (120 Hz beam pulse rate)
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0 EXAMPLE: MIMO APPLICATION OF ADAPTIVE-NOISE CANCELATION </

LQG optimal filters to
inimize beam

position RMS
7 sequential loops

Consider “upstream”
{positions, angles} as
noise — Loop n corrects
for these errors, Loop
n+1 corrects for errors
due to transport (or

residuals after Loop n)

r,
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* Least Mean Square (LMS) Algorithm for updating the weights (matrix elements)
® Only stable if the learning rate is less than the inverse of the largest eigenvalue on the input correlation matrix

®* Magnet supply & klystron fluctuations can cause jitter amplitude to increase 10x in short time, hence eigenvalues

K\O EXAMPLE: MIMO APPLICATION OF ADAPTIVE-NOISE CANCELATION C/

change proportionally = leads to a low learning rate and slow convergence

O ®* LMS has different convergence rates for each eigenmode
* Sequential Regression Algorithm (SER)
* Adaptively estimates the inverse of the correlation matrix
\ ® Scales the inputs so that all the eigenvalues of the correlation matrix of the scaled inputs are unity (solves both

problems of the LMS algorithm)

®* However calculated weights are unstable initially when large updates occur; Delay updating weights until converged
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Angular loops introduce noise to DARM by the beam off-centering

\ GW DETECTOR PROBLEMS ‘RIPE’ FOR ML?
\] ® Angular controls

DC coupling is removed by the coil balancing (angle to length feedforward)

O * AC coupling due to unsuppressed angular motion, and imperfect balancing
Bandwidth limited to keep angular control noise injection low
Let ML adaptively adijust feedforward gains for the unsuppressed angular motion (ASC error point)?
(Essentially a time-varying coil balancing)
® Interferometer Global control parameters
® Let ML tune up the global controls, just as an operator does ...
* Blends, Michelson feedforward, ASC bandwidth, bounce /roll servos, ...
® Based on the seismic noise in a particular band, wind speed, ...

®* TCS control

®* Compensate for TM radius of curvature when IFO is locked or transitioning in and out of lock

® Let ML discover the model, or predictor, for TM thermal lens

® Others?
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