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= FRIB at MSU
= Opportunities for in-beam y-ray spectroscopy
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Facility for Rare Isotope Beams

* Funded by DOE Office of
Science Office of Nuclear
Physics, Michigan State
University and State of
Michigan

Experiments with fast, stopped,

- Key Feature IS 400 kW and reaccelerateé bé‘ams N | Wy
beam power (5 x1073 Socy @ O ] oo
238U/S)

» Separation of isotopes
|n_fI|nh’r .

. Fast development time
for any isotope '

» Suited for all elements
and short half-lives

* Fast, stopped, and
reaccelerated beams -

@ superconducting RF
- . linear accelerator

Rare isotope
production area and
isotope harvesting
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Facility for Rare Isotope Beams, FRIB

on the Michigan State University Campus
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MSU was Selected in December 2008
Following Competitive Procurement
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FRIB history and progress

= 8 June 2009 — DOE-SC and MSU sign Cooperative Agreement
= September 2010 — CD-1 approved, DOE issues NEPA FONSI

= August 2013 — CD-2 approved (baseline), CD-3a approved (start civil construction
pending FY2014 federal appropriation)

= March 2014 — Start civil construction

= October 2014 — Start technical construction

» January 2016 — DOE Operations Cost review

»* Managing to early completion in fiscal year 2021, CD-4 is June 2022

» Tunnel and first surface buildings (ECR and frontend) complete in 2015 (16 months ahead of
baseline schedule)

 First beam from room temperature ECR in 2016 .

#
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FRIB construction progress

Civil Construction Ten Weeks Mech/Electrical Linac Fit-
Ahead of seeoe s e Out 12 Months Ahead of
e Baseline Schedule

The ARTEMIS ion source is now installed on
the platform in the front end building

Cryogenic piping installation in the east end of the
linac tunnel
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ReA3 operational at NSCL — ReA6-12 upgrade
articulated in whitepaper
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AT-TPC
ReA12 Hall

Injection of
“stopped” beams

GRETINA

. _
Ny P i
+ Solenoid GRETA

Spectrometer

ReA6-12: Effective use of the entire
arsenal of tools developed for
low-energy nuclear science

during the past half century

Multi-
2 * Purpose

— Coulomb excitation, elastic and inelastic

scattering, transfer reactions, deeply inelastic “_ P .
transfers, complete & incomplete fusion, fission ... ReA12 has been a priority of
: : the FRIB science community
— Surrogate reactions for nuclear astrophysics and o
stockpile stewardship O
H _EN
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Lofty goal: Comprehensive model of nuclear

structure and reactions

Energy density functional

= A comprehensive and
quantified model of atomic

nuclei does not yet exist
80

Configuration

* |[n recent years, enormous interaction

progress has been made
with measurements of 60 -
properties of rare isotopes
and developments in
nuclear theory and
computation

Proton Number
S
|

= Access to key regions of 20
the nuclear chart
constrains models and
identifies missing physics 0F

104 10° pps
102 - 104 pps
|

100 - 102 pps
102 - 100 pps
104 -102 pps

l 106-104 pps

» Theory identifies key
nuclei and properties to be

Number
Continuum |

NeuN
Ab initio

L
120 140

studied

Y
Relationship to QCD (LQCD)
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Calcium isotopes — where ab-initio, configuration
interaction models and density functionals meet

= How many Ca nuclei exist? °8Ca was observed in experiments.
Theory: The jury is still out ...

Coupled-cluster calculations State-of-the-art energy density
based on chiral EFT functionals
LU I D B
400 «—a NN+ 3NF . E “ A 4
+—e Experiment 28 | L Ca
A20F ™ NN anlu E LY 2t
; 3 \-\\ ——% INIy OILY E :;« 24 + \ .
O AanE N N E 2 20 SR
—-440F "~ R P . E = R—— e
S E e e e T I :
M 460 E A = B 12\« uNeDRo W
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o < 3 FRDM
-480F t" E NI HTB"] ¥
E Ca iSDtO es el —- E 0 _b_" __________ )
-500F P St S 20 30 40 50
= [ [ N N N N I | L1 1 1 3 neutron number
484950 515253545556 5960 6162 . .
mass number A Calcium isotopes bound out to
about °Ca

60Ca weakly bound/unbound, 61-62Ca

are located right at threshold -
C. Forssen et al., Physica Scripta T152 014022 (2013) H_EE
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Access to Calcium isotopes at FRIB

= Calcium isotopic chain (Z=20) is

crucial Calcium Isotopes

10™
* FRIB provides access to the 10°- ;
relevant neutron-rich Ca isotopes ., (Y benchmark nucleus *Ca
with intensities sufficient to 0 Current limit of known nuclei

. =108 —
measure important observables g ~ |atelimitfor

] . o 1 Oa_reaccelerated
* Masses, half-lives, decay properties, % = |Peams

single-particle and collective degrees x 10
of freedom 10"
* Structure of heavy Ca isotopes will 10
quantify the role of the 3N forces and

| Key benchmark nucleus
%Ca

Limit for detailed structure
—

weak binding 10 Limit for basic information >
1071 existence, half-life
* I[n general: Long isotopic chains are 46 48 50 52 54 56 58 60 62 64 66 68 70 72
essential Mass Number
» Evolution of nuclear properties can be
benchmarked as a function of isospin o8
[ |
H EN
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Understanding the nuclear force — Calcium
iIsotopes, where we are and where we can go

= The neutron-rich Ca isotopes beyond 48Ca provide textbook examples of structural evolution

» Theory suggests a sensitivity of the detailed structure to the inclusion of a variety of
many-body correlations, including 3N forces

(@) 50Ca -> *9Ca
GRETINA @ NSCL
GEANT4 simulation

500

1000 1500 2000

Energy (keV)

Enabled by the GRETA y-ray tracking array
coupled to the High Rigidity Spectrometer (HRS)

107 102 ¢
Rare isotope beam intensity (pps) at optimum rigidity The structure around

~——-60Ca informs the

detailed spectroscopy at HRS first spectroscopy at HRS aneatz=20

[
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Rare isotopes are important to understand
astrophysical scenarios
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20 e ——— p-process
to exis
- neutron star processes
8 -  Supernova cores
X — Ss-process
8 20 28 50 82 126

Number of Neutrons

: o
» Data on rare isotopes and their reactions are required to elucidate
many astrophysical scenarios
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Example: Understanding X-ray busrst, the most
frequent explosions in the Universe

= X-ray bursts are frequently observed

thermonuclear flashes ignited on the 2
surface of accreting neutron stars 1.8
1.6

= Type | X-ray bursts are powered by 1.4
the rapid proton-capture process 1.2

1

= X-ray burst light curves — from 0.8
satellite observations — are sensitive 0.6
to the rp-process reaction network 0.4
0.2

» Once the underlying nuclear physics n

|c ||nr|nr'ei'nnr~| hnmngrlennc nf hllr'Q‘l'
(IR AVAVI BG4V VAWV | ,\J ||Vu|u|\)

observations with models offer a
unique pathway to constrain neutron-
star properties such as accretion
rate, accreted composition, or radii.

Burst profiles depend on nuclear
rates

——

[
Amthor, Cyburt et al. 2012 ]

—=Al(p,y) Up
—333Al(p.,y) Down

= =

time (sec)
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GRETA@FRIB reach for novae and X-ray
burst reaction rate studies

GRETINA e Experimental scheme:
B~ 0.32¢ @ Soisn
& p s O = Populate capture
n* n _ . Cd (48 .
- g:afggiﬁ : resonances, typically lower-
Y to focal plane $800 . Rug44; Sp|n StateS above Sp
u Nb(4h;|~;::(42 . . .
L2 = Determine excitation energy
Sr (38) - I _
S7Cu(d,n)eZn @ 75 MeViu _2eerrr precisely from y-ray
B o) transitions
As(3§,}
ca st Il O . -
> 300 “« 1 é‘iﬁﬂ Imi"uu&ﬂ ;|JI -
o o " —< O lEY Uy 4o
200 IR in
, S I T v
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- —— Langer et al. (2014) N
Lr Forstner et al. (2001) . b\m W&W\MMMMMM

1000 2000 3000 4000 5000
Energy (keV)
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Selected isotopes to test fundamental
symmetries — electric dipole moment search

@ *—FC_,.D*—F(_,.D
T )
EDMt lSpin EDMt ISpin EDMl TSpin

An Electric Dipole Moment (EDM)
* Violates T and consequently CP symmetry

« Large value would be evidence for physics beyond the Standard Model and a
possible explanation for matter dominance over antimatter

« For an atomic EDM, most sensitive limit today: |d('*°Hg)| < 3.1x10-2° e cm — Giriffith
et al. (2009)

* Properties of some nuclei enhance the signal of an EDM is enhanced, e.qg.

EDM(°°Ra) / EDM("®®*Hg) 2-3 orders of magnitude (nuclear octupole deformation),™®

— Dobaczewski, Engel (2005) and Ban, Dobaczewski, Engel, Shukla (2010) amE

MICHIGAN STATE (;
UNIVERSITY %& A. Gade, FRIB NuSpIn 2016 16




EDM searches — Octupole deformation enhances
the signal

Octupole deformation
(reflection asymmetric) \

A closely spaced parity doublet near ground state
enhances the appearance of parity violating terms in
the underlying Hamiltonian — Haxton & Henley (1983)

* Large intrinsic Schiff moment due to octupole
deformation — Auerbach, Flambaum & Spevak (1996)

* Nuclear structure physics needed Parity doublet
to interpret an EDM signal and to
identify and characterize new, — Y= (o) - IBY)/A2

more sensitive, EDM candidate 55 keV
nuclei (e.g. EDM (??°Pa) / EDM !
('*°*Hg) enhanced by: 3 x 104 -

Flambaum (2008)) ~~

= (o) + B2

/

PRL 114, 233002 (2015) PHYSICAL REVIEW LETTERS S TUNE B0Ts

E4 225
First Measurement of the Atomic Electric Dipole Moment of 2Ra SucceSSfUI Ra EDM
. efforts underway at
Argonne National Lab &
[ |
H EN
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Nuclear structure input for EDM searches at FRIB —
characterize octupole collectivity in Ra/Rn region

ARTICLE b P Gaffney etal. Nature 497 (2013) What is possible in Ra/Rn region now (left)
and expected at FRIB (right)

3 10 '
x GRETA at FRIB
> 10° Miniball at ISOLDE 2
= (&)
3 10° & . 10*
N o
© 102 & +: 10°
10 ﬁ
10°
1
10
107
102 1
10° ot Lo Lol b a1
104 506" "800 400 500 600 700 800 900 000
Energy [keV] 3 sl 2 GRETA at FRIB
. . % C N vy coincidences
41 GRETA combined with the FRIB reaccelerated g wf Gateon 7> 5
beam intensity and energy provides a 100-fold or "l
more increase in the intensity for studies in the 2ol vy N
region =2 Unprecedented potential for identification o o !
and characterization of octupole-collective WNMLM*— |
candidate nuclei for EDM searches. Encray [keV]._|
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A note on nuclear reactions

= Nuclear reactions are an essential tool for the extraction of crucial
information for nuclear structure physics and nuclear astrophysics

* The required beam energy range spans from keV/u (astrophysics) to
above 200 MeV/u for heavy-ion reactions that will constrain the nuclear
equation of state

0 Mev/u 50 Mev/u 100 Mev/u 200 Mev/u
Capture Fission i I
One-nucleon Transfer Secondary Fragmentation Charge Exchange Reactions
Pair Transfer Intermediate-energy Coulex
Barrier-energy Coulex Knockout Reactaie
Fusion _ HI-indpced Pickup Coulex
Deep Inelastic Scattering Inelastic Proton Scattering (M1 Modes And
Astrophysics Fission Properties _ _ Weak Interaction Strength
Single-particle Degree of Freedom ~ EXCited States and Properties The Equation of State
Pairing Low-lying Qudrupole Collectivity Single-particle Properiies
Collectivity Beyond the 1st Excited State and Shapes Single-particle Properties and In-medium Effects
Heavy Elements  Intruder States Higher-vina Collective Mod
Rare Isotopes at High Spin Disentangle Proton and Neutron GHEIINg, SOTEGINE Aot

Contributions to Collectivity {Fyamy:and ClantResonances)

= FRIB will provide the full range of beam energies required to exploit -'_

nuclear reactions for nuclear structure and astroehxsics . -I--
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In-beam y-ray spectroscopy at FRIB — New
opportunities

GRETA

Fast beams GRETA whitepaper Reaccelerated beams
" ISLA "E*i\
Spectrometer Dipoles Large-Gap Sweeper Dipole Target R\

30° dipole, 2.1 T
30° dipole, 21T

N 30° sweeper, 21T
Isochronous
. Achromatic
) Focal Plane
/1

8.000m (min) B _‘_",v"j
/ Dispersive
L\ \ Focal Plane

Charged Particle
Detectors

Neutron Detector Array

ISLA whitepaper
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HRS whitepaper
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Outlook

» Development of a predictive model for nuclei

» To answer: What combinations of protons and neutrons can be made into
abound system? What is the nature of the nuclear force?

» Foundation for astrophysical modeling

 Access to key data needed to understand the origin of the elements in
nucleosynthesis processes and extreme astrophysical environments

» Search for symmetry violations, e.g. atomic EDMs

» Manifold opportunities at FRIB to contribute to the hunt for physics
beyond the Standard Model (example: octupole collectivity)

Enormous discovery potential!

See also review article: A. Gade and B.M. Sherrill, NSCL and FRIB at Michigan State University: Nuclear

science at the limits of stability, Physica Scripta 91, 053003 (2016) -

Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics under [ .=

Cooperative Agreement DE-SC0000661. I I
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Thond you
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