Overview

Experimental Studies of Isospin Breaking Interactions

THE UNIVERSITY OF VOR

University of York, UK

Mike Bentley

- Introduction
- What can we learn about **effective isospin-non-conserving** (INC) interactions in the shell-model?
- Spectroscopy of exotic IAS using knockout reactions (MSU) spectroscopy of proton-rich ⁵²Co
- Recent results for ⁷⁰Kr from JYFL Isospin symmetry of the A=70 triplet

Isospin Symmetry and Isospin Breaking

Mirror Energy Differences

What can we learn about effective INC interactions?

 $V^{(1),J} = V_{pp}^J - V_{nn}^J = V_C^{(1),J} + V_B^{(1),J}$

Coulomb two-body ME additional isospinnon-conserving term - INC

What can we learn about effective INC interactions?

 $V_B^{(1),J}$ $V^{(1),J} = V_{pp}^J - V_{nn}^J = V_C^{(1),J} +$

Extract from fit?

Coulomb two-body ME additional isospinnon-conserving term - INC

THE UNIVERSITY OF YORK

What can we learn about effective INC interactions?

• Hard to reconcile with CSB seen in NN scattering....(both sign and magnitude)

Bentley, Lenzi, Simpson, Diget, Phys. Rev. **C92** 024310 (2015)

Triplet energy differences T 5/2 2 $E_{T_z=0}$ 3/2 $\langle E_{T_{z}=\pm 1} \rangle -$ 1 ш ____ 1/2 3/2 -3/2 -5/2 -1/2 1/2 5/2 G.S 0 -2 2 $T_{7}=0$ -1 1 T₇=-1 T₇=+1 $TED(\alpha) = E_{J,T,T_z=-1}^* + E_{J,T,T_z=+1}^* - 2E_{J,T,T_z=0}^*$

TED are:

THE UNIVERSITY OF VORK

- Very sensitive to details of two-body interaction
 <u>Isotensor</u> in nature:
- Always negative

$$V^{(2),j} = V^{j}_{pp} + V^{j}_{nn} - 2V^{j}_{np} = V^{(2),j}_{C} + V^{(2),j}_{B}$$

Triplet energy differences

Isotensor INC = $V_B^{(2)} = V_{pp} + V_{nn} - 2V_{np}$

THE UNIVERSITY OF 1

188 mg/cm2 Be target

Odd-odd T=1 mirror nuclei – ⁵²Co and ⁵²Mn

Odd-odd T=1 mirror nuclei – ⁵²Co and ⁵²Mn

⁵²Co - knockout from ⁵³Co 7/2⁻ g.s?

Odd-odd T=1 mirror nuclei – ⁵²Co and ⁵²Mn

⁵²Co - knockout from ⁵³Co 7/2⁻ g.s. and 19/2⁻ isomer...

Theoretical cross sections from E.C.Simpson (ANU)

THE UNIVERSITY OF VOM

- V_B term for J=2 not good enough
- New V_B parameters excellent
- Total V_B effect small!

/ERSITY OF VON

ry

10

S.A.Milne et al, submitted PRL

UNIVERSITY OF JYVASKYLA					⁷³ Sr	⁷⁴ Sr	⁷⁵ Sr	⁷⁶ Sr
				⁷¹ Rb	72Rb	⁷³ Rb	74Rb	⁷⁵ Rb
			⁶⁹ Kr	⁷⁰ Kr	™Kr	72 Kr	⁷³ Kr	⁷⁴ Kr
		⁶⁷ Br	⁶⁸ Br	⁶⁹ Br	70Br	⁷ ¹Br	⁷² Br	⁷³ Br
	⁶⁵ Se	⁶⁶ Se	⁶⁷ Se	⁶⁸ 8e	⁶⁹ Se	⁷⁰ Se	⁷¹ Se	⁷² Se
As	⁶⁴ As	⁶⁵ As	⁶⁶ As	⁶⁷ As	⁶⁸ As	⁶⁹ As	⁷⁰ As	⁷¹ As
Ge	⁶³ Ge	⁶⁴ Ge	⁶⁵ Ge	66Ge	⁶⁷ Ge	⁶⁸ Ge	⁶⁹ Ge	⁷⁰ Ge
Ga	62 Ga	⁶³ Ga	⁶⁴ Ga	⁶⁵ Ga	⁶⁶ Ga	⁶⁷ Ga	⁶⁸ Ga	⁶⁹ Ga

Jurgoam II + RITU + GREAT + UoYTube

Triplet energy differences for A=70

T=1 isospin triplets with A=66 and 74:
New spectroscopy of proton-rich ⁷⁰Kr

⁴⁰Ca(³²S,2n)⁷⁰Kr @ 88MeV

Technique of Recoil-Beta Tagging

A.N. Steer et al, NIMA 565 (2006) 630

UNIVERSITY OF VOI

THE

Triplet energy differences for A=70

Tiny cross-sections: need to find (a) unique detection signature and (b) method of suppression of unwanted channels.

Signature = **fast beta-decay** and **highenergy betas** from super allowed decays between analogue states,

Channel of interest = 2n, pn Primary contaminants = 3p,2p, ...

= Recoil-Beta Tagging

A.N. Steer et al, NIMA 565 (2006) 630

Used already in:

⁷⁸Y: Nara Singh et al, PRC75(2007)061301
 ⁶⁶As: Ruotsalainen et al, PRC88(2013)024320
 and
 ⁶²Ga: David et al, PLB726(2013)665

UoYTube:

- 100 CsI elements
- 75% single proton efficiency
- 98% 3p veto efficiency (for 2n analysis)

J. Henderson et al. JINST 8 (2013)

Triplet energy differences for A=70

Gate on 870 + 997keV gammas

Triplet energy differences for A=70

THE UNIVERSITY of York

Summary:

- Knockout reactions very effective tool for probing proton-rich systems
- Recoil-beta tagging highly effective for studies on N=Z line
- Strong J-dependent INC interactions present in $f_{7/2}$ shell (both isovector and isotensor)
- No evidence for breakdown in symmetry across A=70 triplet

• Isotensor INC (a) consistent across mass regions and (b) in line with NN scattering data (i.e. *np* stronger than *pp* and *nn*) $V^{(2),J} = V_{pp}^J + V_{nn}^J - 2V_{np}^J$

• Isovector INC (a) clear in $f_{7/2}$ shell (b) has strong J-dependence (c) harder to find consistency elsewhere, but work underway....

With special thanks to...

Most importantly Scott Milne (MSU Analysis) - York Dawn Debenham (JYFL Analysis) - York Silvia Lenzi (Padova, shell model), Ed Simpson and Jeff Tostevin (ANU/Surrey, knockout calculations) Alexandra Gade (NSCL lead)

and NSCL team in Michigan

and JYFL team

558 keV

456 keV

THE UNIVERSITY OF WORK

- INC interaction (isovector) = +300 keV (J=0)
 inconsistent with lighter pueloi in f = abolt
- inconsistent with lighter nuclei in f_{7/2} shell

Triplet energy differences in A=66&74

⁶⁶As: De Angelis et al, PRC85(2012)034320 ⁶⁶As: Ruotsalainen et al, PRC88(2013)024320

⁶⁶Se: Ruotsalainen et al. PRC88(2013) 041308
 ⁶⁶Se: Obertelli et al. PLB701(2011)417

Shell-model work by Kaneko et al.

Phys Rev C89 (2014) 031302(R)

- *pf*_{5/2}*g*_{9/2} model space
- JUN45 interaction
- same methodology as f_{7/2} shell
- Includes isotensor INC of +100keV (J=0)

What can we learn about effective INC interactions?

THE UNIVERSITY OF YORK

What can we learn about effective INC interactions?

