Exploring shell structure of nuclides in proximity of doubly-magic ^{132}Sn

Angela Gargano, INFN Napoli
Why 132Sn region?

The only region around a heavy, neutron rich doubly-closed shell nucleus far-off stability experimentally accessible today

➢ gives important information, from the nuclear structure point of view, on the shell evolution and the underlying driving forces
➢ is of great relevance (especially nuclei with $Z<50$) for the description of the rapid neutron capture process of nucleosynthesis
Why 132Sn region?

The only region around a heavy, neutron-rich doubly-closed shell nucleus far-off stability experimentally accessible today

- gives important information, from the nuclear structure point of view, on the shell evolution and the underlying driving forces
- is of great relevance (especially nuclei with $Z<50$) for the description of the rapid neutron capture process of nucleosynthesis

Experimental information \rightarrow allows us to test nuclear models (for shell model: single-particle energies, two-body matrix elements of the residual interaction and effective electromagnetic operators) and to ascertain their capability to provide reliable predictions for nuclei

- which are still unaccessible for present experiments
- involved in $0\nu2\beta$ decay (130Te, 136Xe)
The “realistic” Shell Model

\[H_{\text{eff}} \psi_\alpha = H_0 + V_{\text{eff}} \psi_\alpha = E_\alpha \psi_\alpha \quad \text{with} \quad H_0 = T + U \]

in the model space for only valence nucleons
The "realistic" Shell Model

\[H_{\text{eff}} \psi_\alpha = H_0 + V_{\text{eff}} \psi_\alpha = E_\alpha \psi_\alpha \quad \text{with} \quad H_0 = T + U \]

in the model space for only valence nucleons

Effective shell-model hamiltonian

The shell-model hamiltonian has to take into account in an effective way all the degrees of freedom not explicitly considered.

Two alternative approaches:
- Phenomenological
- Microscopic

\[V_{\text{NN}} (+V_{\text{NNN}}) \Rightarrow \text{many-body theory} \Rightarrow H_{\text{eff}} \]

Definition

[for 2 valence-nucleon systems]

The eigenvalues of \(H_{\text{eff}} \) belong to the set of eigenvalues of the full nuclear hamiltonian in the full Hilbert space.
The “realistic” Shell Model

\[H_{\text{eff}} \psi_\alpha = H_0 + V_{\text{eff}} \psi_\alpha = E_\alpha \psi_\alpha \quad \text{with} \quad H_0 = T + U \]

in the model space for only valence nucleons

\[V_{NN} \ (\ + V_{NNN}) \Rightarrow \text{many-body theory} \Rightarrow H_{\text{eff}} \]

Definition [for 2 valence-nucleon systems]

The eigenvalues of \(H_{\text{eff}} \) belong to the set of eigenvalues of the full nuclear hamiltonian in the full Hilbert space

\(H_{\text{eff}} \) takes into account in an effective way all the degrees of freedom not considered explicitly: namely core nucleons and excitations of valence nucleons into the shells above the model space
Flow chart of a RSMC

- Choice of the free NN potential

- Choice of the model space better tailored to study the system under investigation

- Derivation of the effective Hamiltonian making use of many-body theory

- Diagonalization of the Hamiltonian matrix & calculations of physical observables as energies, electromagnetic transition probabilities*, …

*Need to use microscopic effective operators consistent with the effective Hamiltonian
1st step: choice of the NN potential

Several realistic potentials $\chi^2/datum \approx 1$: CD-Bonn, Argonne V18, Nijmegen, ...

or derived by the chiral effective field theory

short-range repulsion

A. Gargano
1st step: choice of the NN potential

Several realistic potentials $\chi^2/\text{datum} \approx 1$: CD-Bonn, Argonne V18, Nijmegen, ...

or derived by the chiral effective field theory

- normalization procedure for V_{NN}

- low momentum potentials:

 ✓ $V_{\text{low-k}}$

 preserves the properties of the original NN potential up to a momentum-space cutoff Λ

 ✓ chiral potentials defined for momenta below a low cutoff
2nd step: choice of the model space

\[\begin{array}{c}
\pi \\
133Sn \\
133Sb \\
50 \\
\pi^{-1} \\
131Sn \\
131In \\
132Sn \\
82 \\
\end{array} \]

- \[i_{13/2} \]
- \[f_{5/2} \]
- \[p_{1/2} \]
- \[h_{9/2} \]
- \[p_{3/2} \]
- \[f_{7/2} \]
- \[h_{11/2} \]
- \[s_{1/2} \]
- \[d_{3/2} \]
- \[d_{5/2} \]
- \[g_{7/2} \]
- \[g_{9/2} \]
- \[f_{5/2} \]
- \[p_{1/2} \]
- \[p_{3/2} \]
3rd step: derivation of the effective interaction by the folded diagram method

H_{eff} is written as a series in terms of the \hat{Q}-box and its derivatives. For instance

$$H_{\text{eff}} = \sum_{i=0}^{\infty} F_i,$$

where

$$F_0 = \hat{Q}(\epsilon_0)$$
$$F_1 = \hat{Q}_1(\epsilon_0)\hat{Q}(\epsilon_0)$$
$$F_2 = \hat{Q}_2(\epsilon_0)\hat{Q}(\epsilon_0)\hat{Q}(\epsilon_0) + \hat{Q}_1(\epsilon_0)\hat{Q}_1(\epsilon_0)\hat{Q}(\epsilon_0)$$

$$\ldots$$

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - \hat{Q}\hat{H}\hat{Q}} QH_1P.$$

where $H_1 = V_{\text{low-k}} - U$; P = model space; $Q = 1-P$; $\epsilon = PH_0P$;
3rd step: derivation of the effective interaction by the folded diagram method

\(H_{\text{eff}} \) is written as a series in terms of the \(\hat{Q} \) - box and its derivatives. For instance

\[
H_{\text{eff}} = \sum_{i=0}^{\infty} F_i,
\]

where

\[
F_0 = \hat{Q}(\epsilon_0) \\
F_1 = \hat{Q}_1(\epsilon_0)\hat{Q}(\epsilon_0) \\
F_2 = \hat{Q}_2(\epsilon_0)\hat{Q}(\epsilon_0)\hat{Q}(\epsilon_0) + \hat{Q}_1(\epsilon_0)\hat{Q}_1(\epsilon_0)\hat{Q}(\epsilon_0) \\
\ldots
\]

\[
\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ} QH_1P.
\]

where \(H_1 = V_{\text{low-k}} - U; P = \text{model space}; Q = 1 - P; \epsilon = PH_0P \)

The series is summed by iterative techniques (Krenciglowa-Kuo, Lee-Suzuki)
Perturbative calculation

The diagrammatic expansion of the \hat{Q}-box

1-body diagrams up to 2nd order

2-body diagrams up to 2nd order:

V V_{1p1h} V_{2p} V_{2p2h}
Perturbative calculation

The diagrammatic expansion of the \hat{Q}-box

1-body diagrams up to 2nd order

S-box

2-body diagrams up to 2nd order

1-4

2-1

2-2

2-3

2-4

A. Gargano

San Servolo, Venice

up-to-date calculations do not go beyond third order!
Results in ^{132}Sn region

- CD-Bonn
- $V_{\text{low-k}}$ ($\Lambda=2.2 \text{ fm}^{-1}$) + Coulomb interaction
- V_{eff} @ second order
- Model space: one major shell for protons/neutrons
- with SP energies from experiment
Realistic shell-model studies around 132Sn

- Energy spectra and electromagnetic properties of nuclei below and above Z=50
- Behavior of odd-even mass staggering around 132Sn
- Evolution of single-particle states beyond 132Sn
- Mixed-symmetry states
- Predictions for exotic Sn isotopes with N>82
- Proton-neutron multiplets
- Similarity of nuclear structure in the 132Sn and 208Pb regions
- Role of three-nucleon forces in neutron-rich nuclei beyond 132Sn

Satisfactory description of nuclear structure properties, although some problems still remain to be solved.
Realistic shell-model studies around 132Sn

- Energy spectra and electromagnetic properties of nuclei below and above Z=50
- Behavior of odd-even mass staggering around 132Sn
- Evolution of single-particle states beyond 132Sn
- Mixed-symmetry states
- Predictions for exotic Sn isotopes with N>82
- Proton-neutron multiplets
- Similarity of nuclear structure in the 132Sn and 208Pb regions
- Role of three-nucleon forces in neutron-rich nuclei beyond 132Sn

- Satisfactory description of nuclear structure properties, although some problems still remain to be solved

- $^{1/2^+ \rightarrow 3/2^+}$ M1 transition in 129Sn
- $(\pi g_{9/2}^{-1} \otimes v f_{7/2})$ multiplet in 132In

- A. Jungclaus, A. Gargano et al, *First observation of γ rays emitted from excited states south-east of 132Sn: The $\pi g_{9/2}^{-1} \otimes v f_{7/2}$ multiplet of 132In$_{83}$*, Phys. Rev. C 93, 041301(R) (2016)
Fast-timing study of the I-forbidden $1/2^+ \rightarrow 3/2^+ M1$ transition in 129Sn

β^- decay of 129In isomers @ ISOLDE
Fast-timing study of the l-forbidden $1/2^+ \rightarrow 3/2^+ M1$ transition in 129Sn

β^- decay of 129In isomers @ ISOLDE

129Sn \leftrightarrow 3 neutron holes in the 50-82 shell
Fast-timing study of the l-forbidden $1/2^+ \rightarrow 3/2^+$ M1 transition in 129Sn

β^- decay of 129In isomers @ ISOLDE

129Sn \leftrightarrow 3 neutron holes in the 50-82 shell

slow l forbidden ($\Delta l=2$) M1 transition
E2 transition hindered

129Sn

<table>
<thead>
<tr>
<th>State</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3/2^+$</td>
<td>$(1d_{1/2})^{-1}$</td>
</tr>
<tr>
<td>$1/2^+$</td>
<td>$(2s_{1/2})^{-1}$</td>
</tr>
</tbody>
</table>
Fast-timing study of the l-forbidden $1/2^+ \rightarrow 3/2^+$ M1 transition in ^{129}Sn

β^- decay of ^{129}In isomers @ ISOLDE

$^{129}\text{Sn} \leftrightarrow 3$ neutron holes in the 50-82 shell

$1/2^+ \rightarrow 315$ keV $3/2^+$

slow l forbidden ($\Delta l=2$) M1 transition

E2 transition hindered

$1/2^+$ $T_{1/2}=19(10)$ ps \rightarrow (assuming a pure M1 transition)

$B(M1; 1/2^+ \rightarrow 3/2^+)=6.4(30) \times 10^{-2} \mu_N^2$

Relatively fast M1 transition
Fast-timing study of the l-forbidden $1/2^+ \rightarrow 3/2^+$ $M1$ transition in 129Sn

<table>
<thead>
<tr>
<th>E_{exc} (in keV)</th>
<th>Calc</th>
<th>Expt</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2^+$</td>
<td>294</td>
<td>315</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J^π</th>
<th>$(n\ell_j)^{-2}$</th>
<th>$(0\ell_{1/2})^{-2}$</th>
<th>$(1\ell_{3/2})^{-2}$</th>
<th>$(2\ell_{1/2})^{-2}$</th>
<th>$(1\ell_{5/2})^{-2}$</th>
<th>$(0\ell_{7/2})^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3/2^+$</td>
<td>69%</td>
<td>12%</td>
<td>8%</td>
<td>6%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>$1/2^+$</td>
<td>60%</td>
<td>27%</td>
<td>7%</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage of the wf configurations $3/2^+ \rightarrow (1d_{3/2})^{-1} (n\ell_j)^{-2}$ & $1/2^+ \rightarrow (2s_{1/2})^{-1} (n\ell_j)^{-2}$
Fast-timing study of the \(l \)-forbidden 1/2\(^+ \) → 3/2\(^+ \) M1 transition in \(^{129}\)Sn

<table>
<thead>
<tr>
<th>(E_{\text{exc}}) (in keV)</th>
<th>Calc</th>
<th>Expt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(^+)</td>
<td>294</td>
<td>315</td>
</tr>
</tbody>
</table>

Percentage of the wave-function configurations

<table>
<thead>
<tr>
<th>(J^\pi)</th>
<th>((nl_j)^{-2})</th>
<th>(0h(_{11/2}))(^{-2})</th>
<th>(1d(_{3/2}))(^{-2})</th>
<th>(2s(_{1/2}))(^{-2})</th>
<th>(1d(_{5/2}))(^{-2})</th>
<th>(0g(_{7/2}))(^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2(^+)</td>
<td>69%</td>
<td>12%</td>
<td>8%</td>
<td>6%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>1/2(^+)</td>
<td>60%</td>
<td>27%</td>
<td>7%</td>
<td>6%</td>
<td>5%</td>
<td></td>
</tr>
</tbody>
</table>

\(e_{\text{eff}} = 0.7 \) \(e \)

\(g_{l}^{\text{free}} = 0, \ g_{s} = 0.7g_{s}^{\text{free}} = -2.68 \)

\(B(E2; \ 1/2^+ \rightarrow 3/2^+) \)

32.89 \(e^2 \) fm\(^4\)

\(B(M1; \ 1/2^+ \rightarrow 3/2^+) \)

0.58 \(\times 10^{-4} \) \(\mu_N^2 \)
Fast-timing study of the l-forbidden $1/2^+ \rightarrow 3/2^+$ M1 transition in 129Sn

<table>
<thead>
<tr>
<th>E_{exc} (in keV)</th>
<th>Calc</th>
<th>Expt</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2^+$</td>
<td>294</td>
<td>315</td>
</tr>
</tbody>
</table>

Percentage of the wave function configurations

\[
\begin{array}{cccccc}
J^\pi & (nl_j)^{-2} & (0h_{11/2})^{-2} & (1d_{3/2})^{-2} & (2s_{1/2})^{-2} & (1d_{5/2})^{-2} & (0g_{7/2})^{-2} \\
3/2^+ & 69\% & 12\% & 8\% & 6\% & 5\% & 5\% \\
1/2^+ & 60\% & 27\% & 7\% & 6\% & 5\% & 5\% \\
\end{array}
\]

Electromagnetic Transition Probabilities

- $e_{\text{eff}} = 0.7e$
- $g_l^{\text{free}} = 0$, $g_s = 0.7g_s^{\text{free}} = -2.68$

- $B(E2; 1/2^+ \rightarrow 3/2^+) = 32.89 \text{ e}^2 \text{ fm}^4$
- $B(M1; 1/2^+ \rightarrow 3/2^+) = 0.58 \times 10^{-4} \mu_N^2$

<table>
<thead>
<tr>
<th>Transition</th>
<th>$T(E2)$</th>
<th>$T(M1)$</th>
<th>$T_{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(E2)$</td>
<td>$0.13 \times 10^9 \text{ s}^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T(M1)$</td>
<td>$0.03 \times 10^9 \text{ s}^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{1/2}$</td>
<td></td>
<td></td>
<td>4 ns</td>
</tr>
</tbody>
</table>

Two order of magnitude larger than the experimental value

$T_{1/2} = 19(10) \text{ ps}$
Fast-timing study of the l-forbidden $1/2^+ \rightarrow 3/2^+$ $M1$ transition in 129Sn

M1 effective operator

with core excitations microscopically taken into account by means of many-body perturbation theory, consistently with the derivation of the effective two-body interaction
Fast-timing study of the l-forbidden $1/2^+ \rightarrow 3/2^+$ $M1$ transition in ^{129}Sn

M1 effective operator

with core excitations microscopically taken into account by means of many-body perturbation theory, consistently with the derivation of the effective two-body interaction

| a | b | $\langle a || M1 || b \rangle_{(I)}$ | $\langle a || M1 || b \rangle_{(II)}$ |
|---------|---------|-------------------------------------|-------------------------------------|
| $0g_{7/2}$ | $0g_{7/2}$ | 1.65 | 1.36 |
| $0g_{7/2}$ | $1d_{5/2}$ | 0 | 0.15 |
| $1d_{5/2}$ | $1d_{5/2}$ | -1.92 | -1.89 |
| $1d_{5/2}$ | $1d_{3/2}$ | 2.05 | 1.88 |
| $1d_{3/2}$ | $1d_{3/2}$ | 1.02 | 1.05 |
| $1d_{3/2}$ | $2s_{1/2}$ | 0 | 0.10 |
| $2s_{1/2}$ | $2s_{1/2}$ | -1.62 | -1.61 |
| $0h_{11/2}$ | $0h_{11/2}$ | -2.49 | -2.48 |

TABLE III. Comparison between the single-hole neutron $M1$ matrix elements (in μ_N) obtained using g factors $g_{l}^{\text{free}} = 0$, $g_s = -2.68$ (I), and those of the effective $M1$ operator (II) (see text for details).
Fast-timing study of the l-forbidden $1/2^+ \rightarrow 3/2^+$ M1 transition in 129Sn

M1 effective operator

with core excitations microscopically taken into account by means of many-body perturbation theory, consistently with the derivation of the effective two-body interaction

| a | b | $\langle a || M1 || b \rangle_{(I)}$ | $\langle a || M1 || b \rangle_{(II)}$ |
|-------|-------|-----------------------------------|-----------------------------------|
| $0g_{7/2}$ | $0g_{7/2}$ | 1.65 | 1.36 |
| $0g_{7/2}$ | $1d_{5/2}$ | 0 | 0.15 |
| $1d_{5/2}$ | $1d_{5/2}$ | −1.92 | −1.89 |
| $1d_{5/2}$ | $1d_{3/2}$ | 2.05 | 1.88 |
| $1d_{3/2}$ | $1d_{3/2}$ | 1.02 | 1.05 |
| $1d_{3/2}$ | $2s_{1/2}$ | 0 | 0.10 |
| $2s_{1/2}$ | $2s_{1/2}$ | −1.62 | −1.61 |
| $0h_{11/2}$ | $0h_{11/2}$ | −2.49 | −2.48 |

Perturbation expansion: some diagrams

OBTD:

$(3)^{-1/2} <3/2^+ | [a_{d3/2}^+ \otimes a_{s1/2}]^1 | 1/2^+ > \sim 0.9$
Fast-timing study of the l-forbidden $1/2^+ \rightarrow 3/2^+$ $M1$ transition in ^{129}Sn

M1 effective operator

<table>
<thead>
<tr>
<th>$B(M1; 1/2^+ \rightarrow 3/2^+)$</th>
<th>$T(M1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.55 \times 10^{-2} \mu_N^2$</td>
<td>3.42×10^9 s$^{-1}$</td>
</tr>
</tbody>
</table>

$T_{1/2} = 200$ ps

20 times shorter than the $T_{1/2}$ obtained with empirical g factors and closer to the experimental value [19(10)ps]
Fast-timing study of the l-forbidden $1/2^+ \rightarrow 3/2^+$ M1 transition in 129Sn

M1 effective operator

<table>
<thead>
<tr>
<th>$B(M1; 1/2^+ \rightarrow 3/2^+)$</th>
<th>$T(M1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.55 \times 10^{-2} \mu_N^2$</td>
<td>3.42×10^9 s$^{-1}$</td>
</tr>
</tbody>
</table>

$T_{1/2} = 200$ ps

20 times shorter than the $T_{1/2}$ obtained with empirical g factors and closer to the experimental value [19(10)ps]

E2?

No substantial change is produced by using a microscopic effective E2 operator!

Effective charge for $\langle 1d_{3/2} || E2 || 2s_{1/2} \rangle \sim 0.8 \Rightarrow$ an increase in $T(E2)$ slightly >1
Fast-timing study of the l-forbidden $1/2^+ \to 3/2^+$ $M1$ transition in 129Sn

M1 effective operator

<table>
<thead>
<tr>
<th>$B(\text{M1}; 1/2^+ \to 3/2^+)$</th>
<th>$T(\text{M1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.55 \times 10^{-2} \mu_N^2$</td>
<td>$3.42 \times 10^9 \text{s}^{-1}$</td>
</tr>
</tbody>
</table>

$T_{1/2} = 200 \text{ ps}$

20 times shorter than the $T_{1/2}$ obtained with empirical g factors and closer to the experimental value [19(10)ps]

No substantial change is produced by using a microscopic effective $E2$ operator!

Effective charge for $\langle 1d_{3/2} | E2 | 2s_{1/2} \rangle \sim 0.8$ ➔ an increase in $T(E2)$ slightly >1

An enhancement of the T ($E2$) similar to the one obtained for the $M1$ transition would require a neutron effective charge equal to 10, a value without any physical meaning!!

➔ the $T_{1/2}(1/2^+)$ arises essentially from the $M1$ transition

➔ the still existing difference between the experimental and calculated half-life may be from higher-order diagrams not included in the calculation of the $M1$ effective operator.
First observation of γ rays emitted from excited states south-east of 132Sn:
The $\pi g_{9/2}^{-1} \otimes \nu f_{7/2}$ multiplet of 132In$_{83}$

132In \leftrightarrow 1 proton hole in the 28-50 shell +
1 neutron particle in the 50-82 shell

Identification of the first-excited states in 132In SE of 132Sn

$[(\pi g_{9/2})^{-1} \otimes \nu f_{7/2}] J^\pi = 1^- \ldots 8^-$
First observation of γ rays emitted from excited states south-east of 132Sn:
The $\pi g^{-1}_{9/2} \otimes \nu f_{7/2}$ multiplet of 132In$_{83}$

132In \leftrightarrow 1 proton hole in the 28-50 shell +
1 neutron particle in the 50 -82 shell

Identification of the first-excited states in 132In SE of 132Sn

$[(\pi g_{9/2})^{-1} \otimes \nu f_{7/2}] J^{\pi} = 1^{-} \ldots 8^{-}$

Unique study case in the table of isotopes:

- the corresponding multiplets south-east of 78Ni and 42Si are currently not accessible for experimental studies

- the $(\pi 0 h_{11/2})^{-1} \otimes \nu 1 g_{9/2}$ multiplet in 208Tl is distorted by
the presence of the $2s_{1/2}$ and $1d_{3/2}$ proton orbitals
First observation of γ rays emitted from excited states south-east of ^{132}Sn: The $\pi g_{9/2}^{-1} \otimes \nu f_{7/2}$ multiplet of $^{132}\text{In}_{83}$

β-delayed neutron emission from ^{133}Cd @ RIBF of RIKEN
First observation of γ rays emitted from excited states south-east of 132Sn: The $\pi g_{9/2}^{-1} \otimes \nu f_{7/2}$ multiplet of 132In$_{83}$

β-delayed neutron emission from 133Cd @ RIBF of RIKEN

γ-ray spectra in prompt coincidence with decay events during the first 200 ms after the implantation of a 133Cd ion

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Without further condition</td>
</tr>
<tr>
<td>b</td>
<td>requiring multiplicity one in the γ-ray detector</td>
</tr>
<tr>
<td>c</td>
<td>b + strict spatial correlation decay took place either in the Si detector in which the ion was implanted or in the one in front or behind</td>
</tr>
</tbody>
</table>

Counts/2 keV

Energy (keV)

A. Gargano
First observation of γ rays emitted from excited states south-east of 132Sn: The $\pi g_{9/2}^{-1} \otimes \nu f_{7/2}$ multiplet of 132In$_{83}$

β-delayed neutron emission from 133Cd @ RIBF of RIKEN

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{graph.png}
\end{figure}

γ -ray spectra in prompt coincidence with decay events during the first 200 ms after the implantation of a 133Cd ion

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Without further condition</td>
</tr>
<tr>
<td>b</td>
<td>requiring multiplicity one in the γ -ray detector</td>
</tr>
<tr>
<td>c</td>
<td>b +strict spatial correlation decay took place either in the Si detector in which the ion was implanted or in the one in front or behind</td>
</tr>
</tbody>
</table>

Six lines at energies of 50, 86, 103, 227, 357, 602 keV
First observation of γ rays emitted from excited states south-east of 132Sn:
The $\pi g^{-1}_{9/2} \otimes v f_{7/2}$ multiplet of 132In$_{83}$

β-delayed neutron emission from 133Cd @ RIBF of RIKEN

γ-ray spectra in prompt coincidence with decay events during the first 200 ms after the implantation of a 133Cd ion

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Without further condition</td>
</tr>
<tr>
<td>b</td>
<td>requiring multiplicity one in the γ-ray detector</td>
</tr>
<tr>
<td>c</td>
<td>b + strict spatial correlation, decay took place either in the Si detector in which the ion was implanted or in the one in front or behind</td>
</tr>
</tbody>
</table>

Six lines at energies of 50, 86, 103, 227, 357, 602 keV

The statistics accumulated are very limited so that no conclusive $\gamma\gamma$ coincidence information could be obtained

A. Gargano
First observation of γ rays emitted from excited states south-east of ^{132}Sn:

The $\pi g_{9/2}^{-1} \otimes \nu f_{7/2}$ multiplet of $^{132}\text{In}_{83}$

Assuming that the six observed γ rays correspond to the expected cascade of M1 transitions from the 1^- to the 7^- member of the $(\pi g_{9/2})^{-1} \otimes \nu f_{7/2}$ multiplet.

The experimental energies are systematically higher than the calculated ones, leading to a total energy spread which is twice as large as theoretically predicted.

average difference between experimental and calculated excitation energies is ~ 300 keV
First observation of γ rays emitted from excited states south-east of 132Sn: The $\pi g_{9/2}^{-1} \otimes \nu f_{7/2}$ multiplet of 132In$_{83}$

In 134Sb, average difference between experimental and calculated level energies amounts to less than 10% of the SM energy spread
First observation of γ rays emitted from excited states south-east of 132Sn:
The $\pi g_{9/2}^{-1} \otimes \nu f_{7/2}$ multiplet of 132In$_{83}$

Assuming that one of the lowest transitions within the multiplet is unobserved and adopting an energy of 25 ± 25 keV for this transition.
First observation of γ rays emitted from excited states south-east of 132Sn:
The $\pi g_{9/2}^{-1} \otimes \nu f_{7/2}$ multiplet of 132In$_{83}$

Assuming that one of the lowest transitions within the multiplet is unobserved and adopting an energy of 25 ± 25 keV for this transition

- The resulting excitation energies are much closer to the SM predictions and the average difference drops to 80 keV, i.e., 12% of the SM energy spread

The region of the chart of nuclides south-east of doubly magic 208Pb.

\begin{itemize}
 \item The 132Sn region with quantum numbers $(h/2, l/2) = (29/2, 1/2)$ and $(27/2, 3/2)$ receives at most 6% of the total feeding.
 \item The lowest transitions within the multiplet are unobserved.
 \item The average difference drops to 80 keV, i.e., 12% of the SM energy spread.
\end{itemize}

Expt
Calc

$\pi p_{3/2}^{-1} \nu f_{7/2}$
$\pi g_{9/2}^{-1} \nu p_{3/2}$
$\pi p_{1/2}^{-1} \nu f_{7/2}$

SM results with effective interaction based on a scaling of TBMEs from the 208Pb region
First observation of γ rays emitted from excited states south-east of 132Sn:
The $\pi g_{9/2}^{-1} \otimes v f_{7/2}$ multiplet of 132In$_{83}$

Assuming that one of the lowest transitions within the multiplet is unobserved and adopting an energy of 25 ± 25 keV for this transition

![Graph showing energy levels for different transitions.]

The resulting excitation energies are much closer to the SM predictions and the average difference drops to 80 keV, i.e., 12% of the SM energy spread

More experimental information is needed!!
Conclusions

• Substantial progress has been made toward a microscopic derivation of the shell-model effective interaction.

• RSMC have proved to lead to an accurate description of the structure of nuclei in 132Sn regions, which makes us confident in their predictive power for physical quantities not yet measured.
Conclusions

- Substantial progress has been made toward a microscopic derivation of the shell-model effective interaction.
- RSMC have proved to lead to an accurate description of the structure of nuclei in 132Sn regions, which makes us confident in their predictive power for physical quantities not yet measured.

For a better assessment of RSMC we certainly need:

- more comprehensive experimental information
- to improve and extend the range of applicability of RSMC by addressing some specific questions.
Contributors

L. Coraggio
A. Covello
A. G.
T. T. S. Kuo (SUNY, Stony Brook-USA)
N. Itaco

+ R. Liča, L. M. Fraile, A. Jungclaus,

Thanks for your attention!