RIUMF TRIUMF Isotope Separator and ACcelerator

TRIUMF Resonant Ionization Laser Ion Source

30 June 2016

NUSPIN 2016

TRIUMF-ISAC

Isotope Separator and ACcelerator

1 RIB delivery to experiments 500MeV p⁺ at 100µA on ISOL target

SiC, NiO, Nb, ZrC, Ta, UC_x Targets Surface, FEBIAD, IG-LIS ion sources

Yield Chart of Nuclides 10 10^{7} 10⁶ 10⁵ 10⁴ 10³ 10^{2} 20 40 80 100 120 140 60 N (neutrons)

ISAC-I Low-Energy <60keV ISAC-I Medium E <1.5MeV/u ISAC-II SC LINAC <10MeV/u Ground state + decay, material science Astrophysics Nuclear reactions and structure

TRIUMF-ARIEL Advanced Rare-IsotopE Laboratory

1 RIB
3 simultaneous RIBs

ARIEL Project:

- new electron linac driver for photo-fission
- new target stations and front end
- new proton beamline

E-linac and electron beamline Sept. 2014

ARIEL

ISAC experimental areas

GRIFFI

30 June 2016

NUSPIN 2016

ISAC experimental areas

ISAC experimental areas

NUSPIN 2016

The 8π Spectrometer

Performed decay spectroscopy at TRIUMF-ISAC-I from 2000 to 2013

Researchers from 24 institutions from 8 countries.

25 post-docs, 5PhD, 12MSc, 1MPhys 12 Grad. Students in progress

The 8π Spectrometer at TRIUMF-ISAC

TRIUMF

GRIFFIN Installation in 2014

GRIFFIN HPGe Clover Detectors

All sixteen GRIFFIN clovers fully accepted

Average Performance of all 64 crystals: Energy resolution@ 121keV = 1.12(6) keV Energy resolution@ 1.3MeV = 1.89(6) keV Photo-peak Rel. Eff. @ 1.3MeV = 41(1) %

Testing performed at SFUDec 20124 AcceptedApril 20138 AcceptedJan 20149 AcceptedMay 201413 AcceptedOct 201416 Accepted6 months ahead of schedule

GRIFFIN HPGe Clover Detectors

A close-packed array of 16 large-volume HPGe Clover detectors, 64 crystals

4096 crystal pairs at 52 unique angles for γ - γ angular correlations

SCEPTAR SCintillating Electron-Positron Tagging ARray

-Two hemispheres of 10 plastic scintillators

-Detect beta particles with ~80% solid angle coverage

C.M.Mattoon et al., PRC75, 017302 (2007)

PACES Pentagonal Array for Conversion Electron Spectroscopy

Five 5mm thick, 200mm² Si(Li)

LN₂-cooled Si diode and FET

Solid angle coverage: 1.4% each, 7% total

~2keV resolution for electrons Dual-Gain data readout – electron, alpha

RIUMF

Fast-Scintillator Array for Excited-State Lifetime Timing

LaBr₃

1500

2000

GRIFFIN+DESCANT

- 70 element array of deuterated scintillator for neutron detection
- Enables beta-gamma-ICE-neutron spectroscopy
- $\sim 1\pi$ solid angle
- Neutron energy from time-of-flight (50cm flight path)
- Online neutron-gamma discrimination
- Commissioning to be completed in 2016.

GRIFFIN Facility at TRIUMF Sensitive Decay Spectroscopy

Fast, in-vacuum tape system Enhances decay of interest

SCEPTAR: 10+10 plastic scintillators Detects beta decays and determines branching ratios

GRIFFIN

Initial operation in

fall 2014. Fully

HPGe: 16 Clovers Detect gamma rays and determines branching ratios, multipolarities and mixing ratios

LaBr₃: 8 LaBr₃ Fast-timing of photons to measure level lifetimes

Zero-Degree Fast scintillator Fast-timing signal for betas

DESCANT Neutron array Detects neutrons to measure beta-delayed neutron branching ratios

PACES: 5 Cooled Si(Li)s Detects Internal Conversion Electrons and alphas/protons

GRIFFIN DAQ System

Custom Digital Electronics Modules designed and built by **TRIUMF** and Universite de Montreal

Programmable **Logic Pulse** Generator

32 Channels NIM or TTL

Clock Distribution Module

10MHz Atomic Clock Low-jitter fan-out to all modules

GRIF-16 Module

16 chans 100MHz, 14bit

4 chans 1GHz,

14bit

Master and **Collector Module**

•625MB/s link to each digitizer 1.25Gb/s link to data storage.

GRIFFIN DAQ System

Custom Digital Electronics Modules designed and built by TRIUMF and Universite de Montreal

High data through-put:

Each crystal running at 50kHz 300MB/s of filtered data, 1TB per hour ≈ 5x10⁹ gamma-gamma coincidences/hour ...to enable ultra-high-statistics studies

High accountability:

Accurate deadtime knowledge Pile-up handling Event traceability from threshold crossing to disk ...to enable high-precision half-life/BR measurements

Excellent Energy Resolution

A.B. Garnsworthy et al., In preparation for NIM A, (2016).

Low-Energy Thresholds

A.B. Garnsworthy et al., In preparation for NIM A, (2016).

High Counting Rates

High Counting Rates

NUSPIN 2016

High Counting Rates

The GRIFFIN Spectrometer at TRIUMF-ISAC

30 June 2016

Over 70 scientists from 12 countries have now joined the collaboration

CTRIUMF

Sensitivity to the r-process beta-decay rates

 $\lambda_{\beta} \times / \div 10$

1.0

Nuclei near N=82 are responsible for the A ~130 r-process abundance peak. Half-life calculations for these nuclei have tuned the GT quenching factor to the 130 Cd half-life, previously reported as 162(7) ms.

Beam production + Setup

R. Dunlop, et al., PRC 93, 062801(R) (2016).

- Uranium carbide target, requires IG-LIS (Ion Guide- laser Ion Source): suppression of surface-ionized species (In, Cs, Ba) by factor 10⁵-10⁶
- IG-LIS beam development in Dec. 2013:

Measured:128Cd: 4040 pps1067 pps129Cd: 237 pps122 pps130Cd: 60 pps16-29 pps131Cd: 3 - 15 pps~0.8 pps132Cd: 0.15 - 0.75 pps~0.1 pps

RIUMF

¹²⁸Cd Half-Life Measurement

R. Dunlop, et al., PRC 93, 062801(R) (2016).

857 keV γ ray, T_{1/2} = 245.8(21) ms Previous 245(5) ms, from G. Lorusso et al. PRL 114 192501 (2015)

TRIUMF R. Dunlop, et al., PRC 93, 062801(R) (2016).

CTRIUMF

Confirmation of shorter half lives

R. Dunlop, et al., PRC 93, 062801(R) (2016).

DF3+CQRPA: I. Borzov *et al*, NPA 814, 159 (2008). RHB+RQPRA: T. Marketin *et al.*, PRC 93, 025805 (2016).

High statistics study of ⁴⁷K to ⁴⁷Ca

Jenna Smith, TRIUMF

RTRIUMF

Beta decay from ⁴⁷K to ⁴⁷Ca at GRIFFIN

- Previously known
- Q_{β} =6643keV

RIUMF

Beta decay from ⁴⁷K to ⁴⁷Ca at GRIFFIN

Expanded knowledge of beta-decay level scheme

Q_{β} =6643keV

$(3/2, 5/2)^+$ $(3/2, 5/2)^+$ $(3/2, 5/2)^+$ $(3/2, 5/2)^+$	6061
$(3/2, 5/2)^{+} (3/2)^{+}$	5454.7 5304.5 4988.2 4604.8 4527.1
	6 4450.7 2 9 5 2 9 5 2 9 5 2 9 5 3 9 50.1
	3887.8
$(5/2, 7/2)^{-}$ $(1/2, 3/2)^{-}$ $1/2^{+}$ $3/2^{+}$	R 3265.4 8 2873.9 2598.5 2577.3
3/2-	2012.6
7/2-	

Beta decay from ⁴⁷K to ⁴⁷Ca at GRIFFIN

Intensity x1000

• Goal: Expand known beta-decay level scheme

Q_β=6643keV

Gamma-gamma angular correlations

$$W(\theta) = A_0[1 + a_{22}P_2(\cos\theta) + a_{44}P_4(\cos\theta)]$$
spins, multipolarities, mixing ratios

⁴⁷K to ⁴⁷Ca: angular correlations

GRIFFIN data suggest spin of **3/2** assignment for these three states.

GRIFFIN Facility at TRIUMF Sensitive Decay Spectroscopy

Fast, in-vacuum tape system Enhances decay of interest

SCEPTAR: 10+10 plastic scintillators Detects beta decays and determines branching ratios

GRIFFIN

Initial operation in

fall 2014. Fully

HPGe: 16 Clovers Detect gamma rays and determines branching ratios, multipolarities and mixing ratios

LaBr₃: 8 LaBr₃ Fast-timing of photons to measure level lifetimes

Zero-Degree Fast scintillator Fast-timing signal for betas

DESCANT Neutron array Detects neutrons to measure beta-delayed neutron branching ratios

PACES: 5 Cooled Si(Li)s Detects Internal Conversion Electrons and alphas/protons

TIGRESS

- 16 Compton-Suppressed segmented HPGe Clovers with digital DAQ
- SHARC Silicon barrel
- Studies with accelerated RIBs 0.5-15MeV/u
- downstream of reaction target (York I Micron).
- Length: 72 mm (24 strips)
- Width: 48 mm (48 strips)
- Upstream 1000 μ m
- Downstream 140 μ m + 1500 μ m.
- ron QQQ2 CD detector (A.A. Chen, Master)
- 4 sectors, active area:
- 9.0 mm to 41 mm radius (16 rings)
- 81.6° (24 radial strips)
- Thick ness: $300-400 \ \mu m$.

¹¹Be on ¹⁹⁷Au at TIGRESS

V. Pesudo, M.L.G. Borge et al., Submitted to PRL.

	Telescope	type	<i>θ</i> , L	Serial	Det. Th	front DL	back DL
				number*	(µm)	th. (nm)	th. (nm)
ΔE	1	DSSSD	28°, 80 mm	2449-7	42	50+4%(300)	800
	2	DSSSD	45°, 60 mm	2449-10	40	50+4%(300)	800
	3	DSSSD	76°, 60 mm	2561-6	41	50+4%(300)	800
	4	SSSSD	130°, 55 mm	2752-7	20	800	800
E	1	PAD	45°, 60 mm	2712-8	500	800	800
	2	PAD	28°, 80 mm	2331-4	500	800	800
	3	PAD	76°, 60 mm	2712-11	505	800	800
	4	DSSSD	130°, 55 mm	2851-20	295	800	800

Inelastic scattering of oneneutron-halo ¹¹Be on ¹⁹⁷Au around the Coulomb barrier.

10⁵pps at 31.9 and 39.6MeV 1.9mg/cm² ¹⁹⁷Au tilted at 15°

30 June 2016

RIUMF

¹¹Be on ¹⁹⁷Au at TIGRESS

V. Pesudo, M.L.G. Borge et al., Submitted to PRL.

¹¹Be on ¹⁹⁷Au at TIGRESS

V. Pesudo, M.L.G. Borge et al., Submitted to PRL.

- equivalent photon method (EPM)
- continuum-discretized coupled channels (CDCC)
- (XCDCC) includes core-halo entanglement

¹¹Be on ¹⁹⁷Au at TIGRESS

V. Pesudo, M.L.G. Borge et al., Submitted to PRL.

B(E1) strength calculation – coupling of core and halo states are important

D. Millener et al., Phys. Rev. C 28, 497 (1983). E. Kwan et al., Phys. Lett. B 732, 210 (2014).

CTRIUMF

Experimental Setup to Measure d(²⁵Na,p)²⁶Na at TRIUMF

G.L Wilson, et al., Accepted to PLB (2016).

NUSPIN 2016

Data from d(²⁵Na,p)²⁶Na at 5 MeV/A using SHARC at ISAC2 at TRIUMF

G.L Wilson, et al., Accepted to PLB (2016).

При Riume Experimental Results from studying d(²⁵Na,p)²⁶Na at TRIUMF

Transfer program at ISAC-II

Kruecken, Cruz, Bender et al.

```
d(<sup>94</sup>Sr,p)<sup>95</sup>Sr, 5.5 MeV/u
d(<sup>95</sup>Sr,p)<sup>96</sup>Sr, 5.4 MeV/u
d(<sup>96</sup>Sr,p)<sup>97</sup>Sr, 5.5 MeV/u
```

Plans to now perform (t,p) pair transfer studies

TIGRESS + SHARC

30 June 2016

d(⁹⁵Sr,p)⁹⁶Sr

Kruecken, Cruz, Bender et al.

d(⁹⁵Sr,p)⁹⁶Sr

Kruecken, Cruz, Bender et al.

TIGRESS Integrated Plunger

K. Starosta SFU et al.

Plunger working well, here with CsI test wall

RUMF K. Starosta SFU et al.

NUSPIN 2016

TIGRESS Integrated Plunger

K. Starosta SFU et al.

K. Starosta SFU et al.

TIP, ⁹⁴Sr case

TIGRESS Integrated Plunger

K. Starosta SFU et al.

CsI ball under construction

SPICE Design

SPICE run: Aug 2015

Garnsworthy, Smallcombe et al.

68 MeV ¹²C beam, 4 mg/cm^{2 152}Sm, 300 ppA, 13.5 hours,

> Coulex: ¹⁵²Sm(¹²C,¹²C)¹⁵²Sm*

Fusion evaporation: ¹⁵²Sm(¹²C,4n)¹⁶⁰Er*

SPICE run: Aug 2015

Garnsworthy, Smallcombe et al.

68 MeV ¹²C beam, 2.9 mg/cm² ¹⁹⁶Pt, 10 ppA, 2 hours, ¹⁹⁶Pt(¹²C, ¹²C)¹⁹⁶Pt*

Coincidence with heavy-ion recoil in S3 detector

60

SPICE run: June 21-25 2016

 $\Delta E - E$ telescope 140um and 1mm S3

250ppA 36MeV alpha beam on 1.6mg/cm² ¹¹⁰Pd target

61

Summary

- ISAC and the future ARIEL facility promises a bright future for ISOL beams at TRIUMF.
- GRIFFIN is operational. First physics result is published in 2016.
 - DESCANT to come online this year
- Several new ancillary detectors now available for TIGRESS.
 - TIP plunger
 - SPICE electron detector
- New collaborations are very welcome!

NUSPIN 2010

Summary

- ISAC and the future ARIEL facility promises a bright future for ISOL beams at TRIUMF.
- GRIFFIN is operational. First physics result is published in 2016.
 - DESCANT to come online this year
- Several new ancillary detectors now available for TIGRESS.
 - TIP plunger
 - SPICE electron detector
- New collaborations are very welcome!

We have post-doc openings! See www.triumf.ca

Thanks to Collaborators

G.C. Ball, T. Ballast, C. Bartlett, P. Bender, N. Bernier, D. Bishop, M. Bowry, D. Brennan, T. Bruhn, R. Caballero, A. Cheeseman, R. Churchman, S. Ciccone, B. Davids, L. Evitts, I. Dillmann, S. Georges, G. Hackman, S. Hallam, J. Henderson, R. Kokke, R. Kruecken, K. Leach, Y. Linn, C. Lim, L. MacConnachie, D. Miller, W.J. Mills, L.N. Morrison, M. Moukaddam, C.A. Ohlmann, O. Paetkau, J. Park, C.J. Pearson, M.M. Rajabali, P. Ruotsalainen, B. Shaw, J. Smallcombe, J.K. Smith, D. Southall, C. Unsworth, Z.M. Wang, S. Wong, *TRIUMF, Canada*;

H. Bidaman, V. Bildstein, P. Boubel, C. Burbadge, G. Deng, A. Diaz Varela, R.A. Dunlop,
M. Dunlop, P.E. Garrett, B. Hadina, B. Jigmeddorj, D. Kisliuk, A. Laffoley, A. MacLean,
E. McGee, B. Olaizola Mampaso, A. Radich, E.T. Rand, C.E. Svensson, J. Turko, T. Zidar, *University of Guelph, Canada;*

C. Andreoiu, A. Chester, F. Garcia, J.L. Pore, U. Rizwan, K. Starosta, P. Voss, J. Williams, *Simon Fraser University, Canada*

J-P. Martin, Universite de Montreal, Canada;

R. Braid, S. Ilyushkin, K. Kuhn, W. Moore, F. Sarazin Colorado School of Mines, USA

E. Peters, S. Yates University of Kentucky, USA

S. Tabor, une original State University, USA

Université de Montréal

A. Jungclaus, CSIC Madrid, Spain

- E. Padilla Rodal, UNA Mexico
- C. Petrache, University of Paris-Sud, France

NUSPIN 2016 64 and the other members of the GRIFFIN collaboration