

PERSPECTIVES IN NUCLEAR PHYSICS AT PHYSICS AT ELI-NP

NUSPIN 2016 Workshop June 27 – July 1, 2016 San Servolo, Venice

CĂLIN A. UR FOR THE ELI-NP TEAM

Extreme Light Infrastructure – Nuclear Physics

Nuclear Physics research with extreme electromagnetic fields

Part of the Extreme Light Infrastructure pan–European Research Center

Based on the National Physics Platform in Magurele (Bucharest)

Host for two major systems

2 x 10 PW High–Power Lasers System

Thales Optronique

High Brilliance Gamma Beam System

EuroGammaSAssociation

ELI–NP –Building Status

ELI–NP – Building Status – April 2016

Extreme Light Infrastructure – Nuclear Physics

The High–Power Laser System

HPLS architecture

- dual front-end
- two arms

2 x 10 PW

- → 6 outputs
 - 2 x 0.1 PW 10Hz
 - 2 x 1 PW 1Hz
 - 2 x 10 PW 0.1Hz

The High–Power Laser System

Provided by THALES Optronique & Thales Romania

HPLS architecture

- dual front—end
- two arms

2 x 10 PW

- → 6 outputs
 - 2 x 0.1 PW 10Hz
 - 2 x 1 PW 1Hz
 - 2 x 10 PW 0.1Hz

ELI–NP HPLS Parameters

	min	max	unit
Energy/pulse	150	225	J
Central wavelength	814	825	nm
Spectral bandwidth (FWHM)	55	65	nm
Spectral bandwidth (at nearly zero level of intensity)	120	130	nm
Pulse duration (FWHM)	15	22.5	fs
FWHM beam diameter/Full aperture beam diameter	450/550		mm
Repetition rate	1		pulse/min
Strehl ratio	0.8	0.95	
Pointing stability	2	5	µrad
Beam height to the floor	1500	1510	mm

Intensity ~10²⁴ W/cm²

System with outstanding key features

high peak brilliance (>10²¹ ph/s \cdot mm² \cdot mrad² \cdot 0.1%bwd), high spectral density (> 0.5 \cdot 10⁴ ph/s \cdot eV), tunable energy (0.2 – 19.5 MeV), quasi-monochromatic (relative bandwidth < 0.5%), high degree of linear

ELI–NP Gamma Beam System

Provider – EuroGammaS Association

Academic Institutions INFN (Italy), Sapienza University (Italy), CNRS (France) Industrial Partners ACP Systems (France), ALSYOM(France), COMEB (Italy), ScandiNova Systems (Sweden)

... and sub - contractors

Academic Institutions STFC (UK), ALBA Cell (Spain)

Industrial Partners

Amplitude Systems (France), Amplitude Technologies (France), Cosylab (Slovenia), Danfysik (Denmark), Instrumentation Technologies (Slovenia), M&W Group (Italy), Research Instruments (Germany), Toshiba (Japan)

ELI–NP Gamma Beam Features

Energy (MeV)	0.2 – 19.5
Spectral Density (ph/s·eV)	> 0.5·10 ⁴
Bandwidth rms (%)	≤ 0.5
# photons per pulse within FWHM bdw.	~10 ⁵
# photons/s within FWHM bdw.	10 ⁸ - 10 ⁹
Source rms size (µm)	10 – 30
Source rms divergence (µrad)	25 – 200
Peak brilliance (N _{ph} /sec·mm ² ·mrad ² ·0.1%)	10 ²⁰ – 10 ²³
Radiation pulse length rms (ps)	0.7 – 1.5
Linear polarization (%)	> 95
Macro repetition rate (Hz)	100
# pulses per macropulse	32
Pulse-to-pulse separation (nsec)	16

Two stage system:

Low–energy stage: $E\gamma < 3.5$ MeV

High–energy stage: $E\gamma < 19.5$ MeV

ELI–NP Gamma Beam Features

Energy (MeV)	0.2 – 19.5
Spectral Density (ph/s·eV)	> 0.5·10 ⁴
Bandwidth rms (%)	≤ 0.5
# photons per pulse within FWHM bdw.	~10 ⁵
# photons/s within FWHM bdw.	10 ⁸ – 10 ⁹
Source rms size (µm)	10 – 30
Source rms divergence (µrad)	25 – 200
Peak brilliance (N _{ph} /sec·mm ² ·mrad ² ·0.1%)	10 ²⁰ – 10 ²³
Radiation pulse length rms (ps)	0.7 – 1.5
Linear polarization (%)	> 95
Macro repetition rate (Hz)	100
# pulses per macropulse	32
Pulse-to-pulse separation (nsec)	16

Two stage system:

Low–energy stage: $E\gamma < 3.5 \text{ MeV}$

High–energy stage: $E\gamma < 19.5$ MeV

ELI–NP Gamma Beam Features

Energy (MeV)	0.2 – 19.5	Two stage system:
Spectral Density (ph/s·eV)	> 0.5.104	Low-energy stage: $E_V < 3.5$ Me
	≤ 0.5	
# photons per pulse within FWHM bdw.	~10 ⁵	High–energy stage: Eγ < 19.5 N
	10 ⁸ – 10 ⁹	
Source rms size (µm)	10 – 30	~ 1 ps
Source rms divergence (µrad)	25 – 200	496ns ~ 10 ⁵ ph
Peak brilliance (N _{ph} /sec·mm ² ·mrad ² ·0.1%)	10 ²⁰ – 10 ²³	\rightarrow 16ns
Radiation pulse length rms (ps)	0.7 – 1.5	
Linear polarization (%)	> 95	
Macro repetition rate (Hz)	100	
# pulses per macropulse	32	
Pulse-to-pulse separation (nsec)	16	د×د→
		10ms 10ms

White Book \Rightarrow Day–1 Experiments

<u>Towards TDR of experiments with intense laser beams at ELI-NP</u> June 27-28, 2013 – Bucharest-Magurele (Romania)

<u>Towards TDR of experiments with brilliant gamma-ray beams at ELI-NP</u> July 25-26, 2013 – Bucharest-Magurele (Romania)

- building the main working groups
- conveners and local liaisons

<u>ELI-NP TDRs at Midway – High Power Laser March 16-17, 2014</u> – Bucharest-Magurele (Romania)

ELI-NP TDRs at Midway – SystemGamma Beam System March 16-17, 2014 – Bucharest-Magurele (Romania)

- added new working groups
- applied physics

ELI-NP Science Program and Instruments: Technical Design Reports February 18-20, 2015 – Bucharest-Magurele (Romania)

- final TDRs
- definition of the experimental setups

June 2015 – Scientific evaluation of the TDRs by ISAB

□ Nuclear physics experiments with Lasers:

- Nuclear physics requires particles accelerated at tens of millions of Volts
- In conventional accelerators few particles accelerated over km distances
- Extreme intensity lasers can accelerate trillions of particles over cm distances

Research:

- Nuclear reactions that happen only in stars
- Nuclear reactions for energy storage ("nuclear batteries")
- Nuclear beams and isotopes for radiotherapy
- Ultra-bright X, gamma, and neutron beams for industrial and medical uses

□ High-Field Quantum Electrodynamics (QED) with Lasers:

- QED is quantum theory of interaction of light with matter
- Verified in linear/weakly perturbative regimes
- ELI-NP lasers will test non-linear/strongly-perturbative regimes
- **Research:**
 - Ultrahigh energy free electrons interacting with extreme intensity light
 - Extreme light interacting with electrons in dense plasmas
 - Extreme light interacting with itself and with quantum vacuum

Research with high-power lasers at ELI – NP

Extreme Intensity Light makes extreme electric fields

- Electrons can be accelerated to high energy by extreme intensity light
- lons follow electrons
- Use ultrahigh power lasers focused to µm area to produce extreme intensity light

Target Normal Sheath Acceleration of ions (TNSA)

hot electron propagation MeV energy, µC charge

Laser pushes electrons => ions follow

Recent records:

85 MeV for protons (2016) 11.6 MeV/nucleonn for Al ions (2015)

Radiation Pressure Acceleration of ions (RPA)

Direct action of the ponderomotive force of the laser on the surface electrons

- Ultrathin targets (< 100–200 nm)</p>
- Highly efficient energy conversion (> 60%)
- ➢ lons and electrons accelerated as a neutral bunch→ avoid Coulomb explosion
- Solid state beam density : 10²² - 10²³ e/cm³

Laser field sweep away all electrons, forming an electrostatic field

To produce 1 GeV protons in $\tau = 1$ laser period we need $l \sim 1.2 \times 10^{23}$ W/cm². lons pulled by the charge separation field move together with electrons.

Laser pressure pushes electrons and ions as one

Laser Driven Nuclear Physics

Study of screening factor – The method and cases

D.C. Carrol et al., New J. of Phys. 12 (2010) 045020

Nuclear reaction is hot plasma created by laser beams simulating in laboratory stellar environments

S. Tudisco (LNS/INFN) et al.

28

Complex instrumentation

Laser transport lines and two interaction chambers each with 25 m³ volume.

Target position system with micrometric precision.

Complex experimental arrangement with short pulse, long pulse and probe beams combination.

High Field QED

in few centimeters of gas

New QED effects: dynamics of relativistic electrons in Strong Fields produced by a tightly focused counter propagating 10 PW laser pulse

Gamma Beam Experiments

Pure EM interaction

Spin selectivity (mainly E1, M1 and E2 transitions)

Strength selectivity

Access to nuclear observables - completely model independent

- Excitation Energy E_r
- Spin and parity J, π
- Decay Energies E_{γ}
- Partial Widths Γ_i/Γ₀
- Multipole Mixing δ
- Decay Strengths B(πλ)
- Level Width Γ (eV)

Separation threshold

Dipole Electromagnetic Response of Nuclei

	5	S _n	10	15	E _x [MeV]
Strength (a.u.)					E1
Strength (a.u.)					M1
	5		10	15	E _x [MeV]

New Discovery Frontiers for NRF at ELI–NP

Nuclear Physics

Availability frontier

- access to rare isotopes
- photoresponse of weakly abundant p-nuclei and actinides

Sensitivity frontier

- weak channels
- rotational 2+ states of the nuclear scissor modes

Precision frontier

high statistics

 Γ_0 and Γ/Γ_0 measurements

Krishichayan et al., PRC 91 (2015) 044328

HIγS @ Duke U.

- Relative bandwidth ~ few percent
- Spectral density ~ 10² ph/s/eV

ELI–NP @ Magurele

- Relative bandwidth ~ few per mille
- Spectral density ~ 10⁴ ph/s/eV

HIγS @ Duke U.

- Relative bandwidth ~ few percent
- Spectral density ~ 10² ph/s/eV

ELI–NP @ Magurele

- Relative bandwidth ~ few per mille
- Spectral density ~ 10⁴ ph/s/eV

HIγS @ Duke U.

- Relative bandwidth ~ few percent
- Spectral density ~ 10² ph/s/eV

ELI–NP @ Magurele

- Relative bandwidth ~ few per mille
- Spectral density ~ 10⁴ ph/s/eV

HIγS @ Duke U.

- Relative bandwidth ~ few percent
- Spectral density ~ 10² ph/s/eV

ELI–NP @ Magurele

- Relative bandwidth ~ few per mille
- Spectral density ~ 10⁴ ph/s/eV

HIγS @ Duke U.

- Relative bandwidth ~ few percent
- Spectral density ~ 10² ph/s/eV

ELI–NP @ Magurele

- Relative bandwidth ~ few per mille
- Spectral density ~ 10⁴ ph/s/eV

HIγS @ Duke U.

- Relative bandwidth ~ few percent
- Spectral density ~ 10² ph/s/eV

ELI–NP @ Magurele

- Relative bandwidth ~ few per mille
- Spectral density ~ 10⁴ ph/s/eV

HIγS @ Duke U.

- Relative bandwidth ~ few percent
- Spectral density ~ 10² ph/s/eV

ELI–NP @ Magurele

- Relative bandwidth ~ few per mille
- Spectral density ~ 10⁴ ph/s/eV

Nuclear Resonance Fluorescence

Instrumentation:

- **ELIADE = ELI–NP Array of DEtectors**
- 8 x TIGRESS type Clover detector (segmented) with back–catcher (ε_{ph} ~ 6%)
- 4 x 3"x3" LaBr₃(Ce) detectors
- Digital DAQ

CAD : C.Petcu and E.Udup back-catcher passive shield passive shield

NRF Physics Cases

- constraints on **neutrinoless double-beta decay** matrix elements: A novel decay channel of the scissors mode
- parity violation in nuclear excitations: The case of ²⁰Ne
- an access to the equation of state and to neutron-rich matter: Investigation of the Pygmy Dipole Resonance
- proton-neutron symmetry breaking: Rotational 2⁺ states of the nuclear scissors mode
- the **origin of matter**: Studies of the photoresponse of low-abundant *p* nuclei
- photons and radioactive isotopes: Electric and magnetic dipole response of unstable nuclei

Study level mixing in 1⁺/1⁻ parity doublets

 \rightarrow constrain weak meson-nucleon coupling

V_{PNC} ≡ parity non-conserving interaction (about 1 eV)

- nearly 100% polarized γ beam
- thick ²⁰Ne absorber in front of target removes photons to excite broad 1⁺ state, because σ(1⁺) ≈ 30 • σ(1⁻)
- only 1⁻ state of doublet is excited by remaining photons
- measure M1 admixture to E1 excitation by analyzing NRF events in detector perpendicular to beam axis

Gamma Above n Threshold

- Studies of GDR and PDR decay (⁹⁰Zr, ²⁰⁸Pb)
- Studies of spin–flip M1 resonances
 - combine with information from (γ, γ□)
 (e.g. polarization)
 - γ decay to g.s and ex. states as a function of excitation energy

ELIGANT-GN = ELI-NP Gamma Above n

Threshold

Instrumentation:

- LaBr₃(Ce) / CeBr₃ array (34)
 high–energy gamma rays
- GS10 ⁶Li–glass detectors (29)
 neutrons E_n < 1 MeV
- BC501A liquid scintillator array (33)
 neutrons E_n > 1 MeV

Photofission and Exotic Nuclei

Photofission and Exotic Nuclei

0

4

 (γ, f)

ŤŤ(γ,n)

6

8

ALTO, ARIEL, etc.

 $(\gamma, 2n)^{\dagger}$

10

† (γ,nf)

14

16

18

20

12 ·

Photon Energy (MeV)

IGISOL Setup

β -decay studies at the IGISOL beam line :

- Test of the SM around the doubly-magic ¹³²Sn;
- Studies of the onset and fading away of deformation in the A = 100 Sr–Zr region;
- Studies of collective excitations in the A = 150 deformed region;
- Studies of octupole excitations in Sm-Nd nuclei.

Summary

- the new research facility ELI–NP under construction at Bucharest entered the second Phase of implementation
 - systems with features beyond state-of-the-art : HPLS and GBS
 - → many new research opportunities and challenges
 - <u>Nuclear Physics</u>
 - Laser Driven Nuclear Physics, combined laser–gamma
 - NRF, photofission, photodissociation
 - <u>QED</u>
 - High field QED
 - → implementation of the experimental setups

GOVERNMENT OF ROMANU

Extreme Light Infrastructure - Nuclear Physics (ELHNP) - Phase I Project co-financed by the European Regional Development Fund

"The content of this document does not necessarily represent the official position of the European Union or of the Government of Romania"

For detailed information regarding the other programmes co-financed by the European Union please visit www.fonduri-ue.ro, www.ancs.ro, http://amposcce.minind.ro

ELI–NP Implementation Timeline

