Gamma-ray and Conversion Electron Spectroscopy at JYFL

Paul Greenlees

Department of Physics University of Jyväskylä

Nuclear SPectroscopy INstrumentation Kick-off Workshop 27.06.-01.07.2016 San Servolo, Italy

JYFL Accelerator Laboratory

Paul Greenlees (JYFL)

JYFL Accelerator Laboratory

- University Laboratory Part of Department of Physics
- Accelerator-Based Physics (Nuclear, Material) and Related Applications
- Academy of Finland Centre of Excellence (2000-present)
- EU Access Facility since FP4, currently ENSAR2 H2020
- National Status as Centre of Expertise (Ministry of Education and Culture)
- Only Operational Research Infrastructure on Ministry of Education Roadmap in "Natural Sciences and Technology"
- Recognised Test Facility of European Space Agency (one of three in Europe)
- Around 200 International Users / year

Accelerator Facilities

• 6.4, 14 GHz ECR Ion Sources, New 18 Ghz source under construction

Paul Greenlees (JYFL)

In-beam spectroscopy at JYFL

Use of the K130 Cyclotron

K130 Cyclotron Facility

Upgrade of the JYFL-ACCLAB

Paul Greenlees (JYFL)

In-beam spectroscopy at JYFL

Consequences: Use of the K130 Cyclotron 2011

Use of the K130 Cyclotron 2014/2015

Principles of RDT

History of JUROGAM at JYFL

- Fifth and final campaign ended May 2008
- 2003 2008: 67 experiments, 11000 hours beam on target
- 2008: Fully instrumented with TNT2 digital electronics
- TNT2 cards in collaboration with CNRS/IN2P3 GABRIELA
- Superseded by JUROGAM II

PRL 102. 212501 (2009) PHYSICAL REVIEW LETTERS

week ending 29 MAY 2009

γ -Ray Spectroscopy at the Limits: First Observation of Rotational Bands in ^{255}Lr

S. Retallu,¹⁴ P. T. Greenlees,¹ D. Ackermann,² S. Analia,² E. Ciment,¹ L. Darby,¹⁹ O. Dorvaut,² A. Dorourt,⁴ G. Scokhard, 19. J. P. Galt,³ A. Groger,⁴ G. Ghav,¹⁰ C. Scokhard, 20. J. P. Galt,³ A. Groger,¹¹ G. Ghav,¹¹ C. Stokos,¹¹ G. D. Jones,² P. Helberger,¹² U. Jakobson,¹ G. D. Jones,² P. Jones,¹ R. Julin,¹¹ S. Juninen,¹¹ T. Mkon,³ W. Korten,³ M. Leine,¹ A. P. Leppinen,¹³ J. Juniyaul,¹² S. Moori,¹¹ M. Norent,¹¹ A. J. Ever,¹¹ Device,¹¹ F. Juniyaul,¹² S. Moori,¹¹ M. Norent,¹¹ A. J. Porte,¹¹ P. Jones,¹¹ P. Moriel,¹² David,¹² P. Jenes,¹¹ S. Moriel,¹¹ J. Jones,¹¹ J. Smith,¹¹ D. Rosten,¹² P. Rushiat,¹¹ D. Rosten,¹² P. Rustialina,¹¹ M. Benderine,¹² J. Smith,¹² C. Scholey,¹³ J. Smith,¹² A. Steeler,¹³ and P.-H. Henen¹⁴

The JUROGAM II Germanium Array

- 2003-present: 178 experiments, over 31200 hours
- 120+ refereed journal articles, 50+ conference proceedings, 60 PhD theses

- 24 Clover and 15 Tapered Ge detectors -GAMMAPOOL resources
- Total Photopeak Efficiency 5.2% @ 1.3 MeV
- Excellent γ - γ efficiency
- Autofill system built by University of York, part of GREAT
- Instrumented with Lyrtech digital electronics
- Higher counting rates, higher beam intensities

Paul Greenlees (JYFL)

Range of Ancillary Devices

Conversion-Electron Spectroscopy of ²⁵⁴No

VOLUME 89, NUMBER 20

PHYSICAL REVIEW LETTERS

11 NOVEMBER 2002

Conversion Electron Cascades in ²⁵⁴₁₀₂No

P. A. Butler,¹ R. D. Humphreys,¹ P. T. Greenlees,² R.-D. Herzberg,¹ D. G. Jenkins,¹ G. D. Jones,¹ H. Kankaanpää,² H. Kettunen,² P. Rahkila,² C. Scholey,^{1,2} J. Uusitalo,² N. Amzal,¹ J. E. Bastin,¹ P. M. T. Brew,¹ K. Eskola,³ J. Gerl,⁴ N. J. Hammond,¹ K. Hauschild,⁵ K. Helariutta,⁴ F.-P. Heßberger,⁴ A. Hürstel,⁵ P. M. Jones,² R. Julin,² S. Juutinen,² A. Keenan,² T.-L. Khoo,⁶ W. Korten,⁵ P. Kuusinemi,² Y. Le Cox,⁴ M. Leino,⁴ A. Heirstel,⁵ and H.-J. Wollersheim⁴
P. Nieminen,² S.W. Ødegård,⁷ T. Page,¹ J. Pakarinen,² P. Reiter,⁸ G. Sletten,⁹ Ch. Theisen,⁵ and H.-J. Wollersheim⁴

The SAGE Spectrometer

Future studies of light nuclei - MARA

- Decay spectroscopy (proton and α emitters)
- In-beam spectroscopy at proton drip line
- Nuclear structure related to astrophysical processes (isomers, etc)
- Studies of N~Z nuclei
- Super- and hyper-deformation (N~Z~40)
- Mirror nuclei
- Combination with existing/new devices (LISA/SAGE/DPUNS/UoYTube...)

Future studies of light nuclei - MARA

- 78 Kr + 98 Mo $\rightarrow ^{176}$ Pt*
- 78 Kr + 58 Ni $\rightarrow ^{136}$ Gd*

- ${}^{40}Ca + {}^{45}Sc \rightarrow {}^{85}Nb^*$
- ${}^{40}Ca + {}^{nat}Ca \rightarrow {}^{80}Zr^*$
- ${}^{40}\text{Ar} + {}^{124}\text{Sn} \rightarrow {}^{164}\text{Er}^*$

In-beam studies at MARA

Common Infra:

- Electronics and DAQ
- High Voltage
- LN2 and Autofill

In-beam studies at MARA

- Infrastructure funding from Finnish Academy
- Support structure 150 k€
- IN2 vacuum feedline extension 50 k€
- BGO HV cards / crates 110 k€
- Total: 310 k€

In-beam studies at MARA / RITU - JUROGAM III

In-beam studies at MARA / RITU - JUROGAM III

Paul Greenlees (JYFL)

In-beam spectroscopy at JYFL

NuSPIN2016 22 / 24

Activities outside JYFL

ISOLDE

- SPEDE installed at MINIBALL
- Isolde Decay Station DAQ and analysis
- MINIBALL DAQ upgrade

AGATA

- Limited involvement so far
- Signatory of MoU 2016-2021
- Bid for AGATA capsule and infrastructure
- Finnish Academy 359 k€ 2018-2019
- Decision end 2016?
- Relation to FAIR / DEGAS, support from community?

Paul Greenlees (JYFL)

- Very successful campaigns with JUROGAM and RITU
- Range of ancillary devices: SAGE, DPUNS plunger, UoYTube, LISA
- Laboratory expansion / New Cyclotron more opportunities for nuclear spectroscopy
- MARA separator commissioned, focal plane physics 2016-2017
- MARA separator cave reconstruction and in-beam physics 2017-2018
- Involvement in MINIBALL, AGATA
- Expect a broad and competitive physics program in the future!