

The GALILEO Array at LNL and its first physics campaign NUSPIN 2016

P.R. John (philipp.john@pd.infn.it) On behalf of the GALILEO collaboration

June 30, 2016

Outline

Gamma-ray spectroscopy in Legnaro

The GALILEO project

The Galileo Euclides NeutronWall campaign

Complementary detectors

The first experimental campaign

Legnaro National Laboratories (LNL)

• Where is Legnaro?

Legnaro National Laboratories (LNL)

• Where is Legnaro?

Legnaro National Laboratories (LNL)

• Where is Legnaro?

Tradition of γ -ray spectrometers in LNL

Study of (mostly) proton-rich nuclei

GASP (1992)

EUROBALL (1998)

Tradition of γ -ray spectrometers in LNL

Study of (mostly) neutron-rich nuclei

AGATA (2006)

GALILEO a new $4\pi \gamma$ ray spectrometer

- takes advantage of the developments made for AGATA
 - preamplifiers
 - digital sampling
 - preprocessing
 - DAQ
- uses the EUROBALL cluster detectors capsules
 - improved efficiency
 - development of a new cluster detector with 3 capsules

- 30 GASP detectors
- 10 triple cluster detectors

GALILEO a new $4\pi \gamma$ ray spectrometer

- takes advantage of the developments made for AGATA
 - preamplifiers
 - digital sampling
 - preprocessing
 - DAQ
- uses the EUROBALL cluster detectors capsules
 - improved efficiency
 - development of a new cluster detector with 3 capsules

- 30 GASP detectors
- 10 triple cluster detectors

GALILEO a new $4\pi~\gamma {\rm ray}$ spectrometer

GALILEO current status

- γ -array
 - 25 HPGe Compton-suppressed GASP detectors
 - 4 angular groups
- Light charged particles EUCLIDES
 - \Box 4 π DE-E Si ball (110 detectors)
 - Segmented with segmented detectors
 - Position and energy
- Neutron Wall
 - 50 liquid scintillator detectors
 - $\hfill\square$ n- γ discrimination via TOF and ZCO
 - Analog electronics

γ -array

- 25 HPGe Compton-suppressed GASP detectors
- 4 angular groups
- Light charged particles EUCLIDES
 - \Box 4 π DE-E Si ball (110 detectors)
 - $\hfill\square$ Segmented with segmented detectors
 - Position and energy
- Neutron Wall
 - 50 liquid scintillator detectors
 - $\hfill\square$ n- γ discrimination via TOF and ZCO
 - Analog electronics

γ -array

- 25 HPGe Compton-suppressed GASP detectors
- 4 angular groups
- Light charged particles EUCLIDES
 - \Box 4 π DE-E Si ball (110 detectors)
 - Segmented with segmented detectors
 - Position and energy
- Neutron Wall
 - 50 liquid scintillator detectors
 - $\hfill\square$ n- γ discrimination via TOF and ZCO
 - Analog electronics

γ -array

- 25 HPGe Compton-suppressed GASP detectors
- 4 angular groups
- Light charged particles EUCLIDES
 - \Box 4 π DE-E Si ball (110 detectors)
 - Segmented with segmented detectors
 - Position and energy
- Neutron Wall
 - 50 liquid scintillator detectors
 - $\hfill\square$ n- γ discrimination via TOF and ZCO
 - Analog electronics

GALILEO electronics

GALILEO electronics

- Local processing of the data recorded
- Online Pulse Shape Analysis
- Agata style Local processing

GALILEO electronics

- Local processing of the data recorded
- Online Pulse Shape Analysis
- Agata style Local processing

GALILEO HpGe detectors – today

- 25 HPGe detectors Gasp Type
- FWHM@1332.5 keV < 2.4 keV with experimental shaping: 17 mounted
- Completely digital DAQ
 - \Box 4 μ s rise time, 1 μ s flat top energy stored
 - initial part of the signal taken
 - BGO slave of HPGe
 - very low noise
 - recover time information from the signal
- Efficiency@1332.5 keV 2.4% March 2016

GALILEO HpGe detectors - today

- 25 HPGe detectors Gasp Type
- FWHM@1332.5 keV < 2.4 keV with experimental shaping: 17 mounted
- Completely digital DAQ
 - \Box 4 μ s rise time, 1 μ s flat top energy stored
 - initial part of the signal taken
 - BGO slave of HPGe
 - very low noise
 - recover time information from the signal
- Efficiency@1332.5 keV 2.4% March 2016

Neutron Wall

- 50 (45) detectors, organic scintillators [BC501A]
- Three types of signals for each of them: QVC, TOF, ZCO
- Preselected neutron condition provided to the trigger
- e(1n) = 23-27%; advantageous for identification of 2n channel
- VME electronics ... going to digital?

G. Jaworski 13 of 31

- 50 (45) detectors, organic scintillators [BC501A]
- Three types of signals for each of them: QVC, TOF, ZCO
- Preselected neutron condition provided to the trigger
- e(1n) = 23-27%; advantageous for identification of 2n channel
- VME electronics ... going to digital? G. Jaworski

Neutron Wall

Neutron Wall Det 26 ZCO vs TOF

Euclides π light charged detector

D. Testov

Euclides Channel selection

D. Testov

Doppler Correction

- Identification of evaporated particles
- Event-by-event calculation
- Estimate energy of them, correct for energy loss
- Kinematical Correction
- Mass difference by AME2012 database

GALILEO complementary detectors

- \blacksquare Study weak reaction channels using stable beams \Rightarrow
 - High efficiency
 - High resolving power
- Light charged particle detectors
 - EUCLIDES (Presentation by D. Testov)
 - □ Trace (to be commissioned in July)
 - □ Spider (to be commissioned in July, Presentation by M. Rocchini)
- Neutron detectors
 - NeutronWall
- Recoil detectors
 - Recoil Filter Detector (to be commissioned, Presentation by P.Bednarcyk)
- Fast timing Highenergy $\gamma {\rm ray}$ detector

□ Array of 10 LaBr₃ detectors

Plunger

□ Build in collaboration with Cologne (Presentation by Ch. Fransen)

Array of LaBr₃ detectors

- Cylindrical LaBr3:Ce crystal 3 × 3
- Good Energy Resolution: $\approx 3\%$ @ 661 keV
- Excellent Time Resolution: < 1 ns
- Placed at 20 cm from the target position
- Good Efficiency: $\approx 1\%$ @ 16 MeV (10 crystals) s. ceruti

Array of LaBr₃ detectors

- Cylindrical LaBr3:Ce crystal 3 × 3
- Good Energy Resolution: $\approx 3\%$ @ 661 keV
- Excellent Time Resolution: < 1 ns</p>
- Placed at 20 cm from the target position
- Good Efficiency: $\approx 1\%$ @ 16 MeV (10 crystals) s. ceruti

Silicon Pi Detector (SPIDER): For Coulex Experiments

de.

- Cone configuration to fit the GALILEO vacuum chamber
- Same acquisition system as EUCLIDES: 56 electronic channels can be used as trigger signals ⇒ 56 needed for SPIDER (8 strips for 7 sectors)
- New mechanical frame and electronic adapter to connect SPIDER
- Commissioning: Coulex of ⁶⁶Zn: 11.07 - 17.07

M. Rocchini

Compact Plunger

- Compact plunger
- Constraints Ancillary detectors
- Possibility to couple with part of Euclides

A. Goasduf, Ch. Fransen

Compact Plunger

- Compact plunger
- Constraints Ancillary detectors
- Possibility to couple with part of Euclides
- Commissioned February 2016

A. Goasduf, Ch. Fransen

Mirror Energy Difference in mirror nuclei A=31

- High-spin states in mirror ³¹P and ³¹S
- J>13/2 states not yet observed in ³¹S
- ¹²C@50 MeV + ²⁴Mg
- Experiment in March 2016
- Analysis in early stage, but already higher spin states visible

A. Boso, S.M. Lenzi., F. Recchia

Study of Isospin symmetry in ⁶⁰Zn

- Coulomb interaction breaks the isospin symmetry \Rightarrow Isospin Mixing
- E1 transitions (as Giant Dipole Resonance decay) in N=Z nuclei are sensitive to the degree of mixing
- Isospin mixing decreases as the excitation energy increases
- Comparison of yield of GDR in a N=Z nucleus to the one of N≠Z allow to extract the isospin-mixing probability

Reaction	CN	Ebeam [MeV]	σ_{fusion} [mb]	E* [MeV]
$^{32}S + ^{28}Si$	60 Zn*	86	480	47
${}^{32}S + {}^{30}Si$	⁶² Zn*	75	300	47
$^{32}S + ^{28}Si$	⁶⁰ Zn*	110	880	58
${}^{32}S + {}^{30}Si$	⁶² Zn*	98	800	58

S. Ceruti, A. Mentana., C. Michael

Study of Isospin symmetry in ⁶⁰Zn

- LaBr₃:Ce Detection high-energy γ rays Good Efficiency ($\epsilon \approx 1\%$ @E=16MeV)
- \blacksquare GALILEO Detection low-energy γ rays and identification of reaction channels
- The coincidence between GALILEO & LaBr₃:Ce detectors allow to have a clean selection of the fusion reaction channel

Shape Coexistence in ⁶⁰Zn

- Study of side band of ⁶⁰Zn
- Experiment performed in May 2016
- Nearline analysis: spectrum of ⁶¹Zn

Mengoni, V. Modamio

Shape coexistence in the neutron-deficient Hg isotopes

- Shape coexistence in ¹⁸⁸Hg
- Experiment performed in March 2016
- Early stage analysis

Shape coexistence in the neutron-deficient Hg isotopes

- Shape coexistence in ¹⁸⁸Hg
- Experiment performed in March 2016
- Early stage analysis

Shape coexistence in the neutron-deficient Hg isotopes

- Shape coexistence in ¹⁸⁸Hg
- Experiment performed in March 2016
- Early stage analysis

Future of Galileo

Upgrade of Galileo with 10 tripple clusters

Summary

- GALILEO is a permanent spectrometer available at LNL
- Its first implementation, Phase-1, is now operational with 25 detectors
- GALILEO will make use of various ancillary detectors managed by national and international collaborations.
- First campaign GALILEO Phase-1 in 2015-2017 NW + Euclides + plunger + ...
- It is expected to represent the resident γ-ray spectrometer, in combination with AGATA, with the advent of RIBs at SPES.
- Prototype of the tripple cluster expected soon

Thank you for your attention

Thank you for your attention

Thank you for your attention

If you like Galileo, you will also like

Byobu Museum

@@@@@ 7 Reviews #40 of 94 things to do in Sumida

Specialty Museums, Museums

Outlook

A. Goasduf 31 of 31

Outlook

A. Goasduf 31 of 31