The GALILEO Array at LNL and its first physics campaign

NUSPIN 2016

P.R. John (philipp.john@pd.infn.it)
On behalf of the GALILEO collaboration

June 30, 2016
Outline

Gamma-ray spectroscopy in Legnaro

The GALILEO project

The Galileo Euclides NeutronWall campaign

Complementary detectors

The first experimental campaign
Legnaro National Laboratories (LNL)

- Where is Legnaro?
Legnaro National Laboratories (LNL)

- Where is Legnaro?
Legnaro National Laboratories (LNL)

- Where is Legnaro?
Tradition of γ-ray spectrometers in LNL

- Study of (mostly) proton-rich nuclei

GASP (1992)
EUROBALL (1998)
Tradition of γ-ray spectrometers in LNL

- Study of (mostly) neutron-rich nuclei

Clara (2004)
AGATA (2006)
GALILEO a new $4\pi \gamma$-ray spectrometer

- takes advantage of the developments made for AGATA
 - preamplifiers
 - digital sampling
 - preprocessing
 - DAQ
- uses the EUROBALL cluster detectors capsules
 - improved efficiency
 - development of a new cluster detector with 3 capsules

- 30 GASP detectors
- 10 triple cluster detectors
GALILEO a new 4π γ-ray spectrometer

- takes advantage of the developments made for AGATA
 - preamplifiers
 - digital sampling
 - preprocessing
 - DAQ
- uses the EUROBALL cluster detectors capsules
 - improved efficiency
 - development of a new cluster detector with 3 capsules
- 30 GASP detectors
- 10 triple cluster detectors
GALILEO a new 4π γ-ray spectrometer
GALILEO current status
GALILEO NeutronWall campaign

- **\(\gamma \)-array**
 - 25 HPGe Compton-suppressed GASP detectors
 - 4 angular groups

- **Light charged particles EUCLIDES**
 - \(4\pi \) DE-E Si ball (110 detectors)
 - Segmented with segmented detectors
 - Position and energy

- **Neutron Wall**
 - 50 liquid scintillator detectors
 - n-\(\gamma \) discrimination via TOF and ZCO
 - Analog electronics
GALILEO NeutronWall campaign

- γ-array
 - 25 HPGe Compton-suppressed GASP detectors
 - 4 angular groups

- Light charged particles EUCLIDES
 - 4π DE-E Si ball (110 detectors)
 - Segmented with segmented detectors
 - Position and energy

- Neutron Wall
 - 50 liquid scintillator detectors
 - n-γ discrimination via TOF and ZCO
 - Analog electronics
GALILEO NeutronWall campaign

- \(\gamma \)-array
 - 25 HPGe Compton-suppressed GASP detectors
 - 4 angular groups

- Light charged particles EUCLIDES
 - \(4\pi \) DE-E Si ball (110 detectors)
 - Segmented with segmented detectors
 - Position and energy

- Neutron Wall
 - 50 liquid scintillator detectors
 - \(n-\gamma \) discrimination via TOF and ZCO
 - Analog electronics
GALILEO NeutronWall campaign

- γ-array
 - 25 HPGe Compton-suppressed GASP detectors
 - 4 angular groups

- Light charged particles EUCLIDES
 - 4π DE-E Si ball (110 detectors)
 - Segmented with segmented detectors
 - Position and energy

- Neutron Wall
 - 50 liquid scintillator detectors
 - n-γ discrimination via TOF and ZCO
 - Analog electronics
GALILEO electronics

- Detector Ge
 - Preamps
 - Buffer
 - Digitizer
 - Local processing
 - PCIe board
- Detector AC
 - Preamps
 - Buffer
 - Digitizer
 - Local processing
 - PCIe board
- Detector Si
 - Preamps
 - Buffer
 - Digitizer
 - Local processing
 - PCIe board

- Pre
- Digitizer

- HPGe, AC, Anc. digitized
- Branches are sync by GTS.
- Trigger-less operation
- 240 channels available
- Typical rate ~ 20 kHz/det
- Max rate ~ 50 kHz/det
GALILEO electronics

- Local processing of the data recorded
- Online Pulse Shape Analysis
- Agata style Local processing
GALILEO electronics

- Local processing of the data recorded
- Online Pulse Shape Analysis
- Agata style Local processing
GALILEO HpGe detectors – today

- 25 HPGe detectors Gasp Type
- FWHM@1332.5 keV < 2.4 keV with experimental shaping: 17 mounted
- Completely digital DAQ
 - 4 μs rise time, 1 μs flat top energy stored
 - initial part of the signal taken
 - BGO slave of HPGe
 - very low noise
 - recover time information from the signal
- Efficiency@1332.5 keV 2.4%

March 2016
GALILEO HpGe detectors – today

- 25 HPGe detectors Gasp Type
- FWHM@1332.5 keV < 2.4 keV with experimental shaping: 17 mounted
- Completely digital DAQ
 - 4\(\mu s\) rise time, 1\(\mu s\) flat top energy stored
 - initial part of the signal taken
 - BGO slave of HPGe
 - very low noise
 - recover time information from the signal
- Efficiency@1332.5 keV 2.4%

March 2016
Neutron Wall

- 50 (45) detectors, organic scintillators [BC501A]
- Three types of signals for each of them: QVC, TOF, ZCO
- Preselected neutron condition provided to the trigger
- $\epsilon(1n) = 23\text{-}27\%$; advantageous for identification of 2n channel
- VME electronics ... going to digital?
Neutron Wall

- 50 (45) detectors, organic scintillators [BC501A]
- Three types of signals for each of them: QVC, TOF, ZCO
- Preselected neutron condition provided to the trigger
- $\epsilon(1n) = 23-27\%$; advantageous for identification of 2n channel
- VME electronics ... going to digital?

G. Jaworski
Neutron Wall

Neutron Wall Det 26 ZCO vs TOF

Clean neutrons
Euclides π light charged detector

Self-supported structure
55 dE-E telescopes

absorber

~80% of 4\pi

beam

Kapton Spacer 100 \mu m

HV

particles

Ground

\begin{align*}
\Delta E \\
\text{Thickness: 150 \mu m} \\
\text{Bias: \sim 40-50 V} \\
\text{Leakage Current: \sim 100 nA} \\
\text{Lab resolution: \sim 50 keV} \\
\text{Capacitance: 850 pF}
\end{align*}

E

\begin{align*}
\text{Thickness: 1000 \mu m} \\
\text{Bias: \sim 140-180 V} \\
\text{Leakage Current: \sim 500 nA} \\
\text{Lab resolution: \sim 25 keV} \\
\text{Capacitance: 130 pF}
\end{align*}

Segmented x5
v/c=5%
- higher count rate
- correction for Doppler effects

15 of 31

D. Testov
Euclides Channel selection

- 110 Silicon detectors (80%4π)
- New compact electronics
- Trigger less operation
- Efficiency highly depends on experiment

D. Testov
Doppler Correction

- Identification of evaporated particles
- Event-by-event calculation
- Estimate energy of them, correct for energy loss
- Kinematical Correction
- Mass difference by AME2012 database
GALILEO complementary detectors

- Study weak reaction channels using stable beams ⇒
 - High efficiency
 - High resolving power
- Light charged particle detectors
 - EUCLIDES (Presentation by D. Testov)
 - Trace (to be commissioned in July)
 - Spider (to be commissioned in July, Presentation by M. Rocchini)
- Neutron detectors
 - NeutronWall
- Recoil detectors
 - Recoil Filter Detector (to be commissioned, Presentation by P. Bednarcyk)
- Fast timing Highenergy γray detector
 - Array of 10 LaBr$_3$ detectors
- Plunger
 - Build in collaboration with Cologne (Presentation by Ch. Fransen)
Array of LaBr₃ detectors

- Cylindrical LaBr₃:Ce crystal 3 x 3
- Good Energy Resolution: \(\approx 3\% @ 661 \text{ keV} \)
- Excellent Time Resolution: \(< 1 \text{ ns}\)
- Placed at 20 cm from the target position
- Good Efficiency: \(\approx 1\% @ 16 \text{ MeV} \) (10 crystals)

S. Ceruti
Array of LaBr$_3$ detectors

- Cylindrical LaBr$_3$:Ce crystal 3 x 3
- Good Energy Resolution: $\approx 3\%$ @ 661 keV
- Excellent Time Resolution: < 1 ns
- Placed at 20 cm from the target position
- Good Efficiency: $\approx 1\%$ @ 16 MeV (10 crystals)

S. Ceruti
Silicon Pi Detector (SPIDER): For Coulex Experiments

- Cone configuration to fit the GALILEO vacuum chamber
- Same acquisition system as EUCLIDES: 56 electronic channels can be used as trigger signals ⇒ 56 needed for SPIDER (8 strips for 7 sectors)
- New mechanical frame and electronic adapter to connect SPIDER
- Commissioning: Coulex of 66Zn: 11.07 - 17.07

M. Rocchini
20 of 31
Compact Plunger

- Compact plunger
- Constraints Ancillary detectors
- Possibility to couple with part of Euclides

A. Goasduf, Ch. Fransen
Compact Plunger

- Compact plunger
- Constraints Ancillary detectors
- Possibility to couple with part of Euclides
- Commissioned February 2016
- $^{32}\text{S} @ 172\text{ MeV} + ^{154}\text{Sm} \rightarrow ^{180}\text{Pt} + 6\ \text{n}$
GALILEO Experiments
GALILEO Experiments

High spin structure of 84Br
A. Goasduff, D. Verney

34Ar MED
C. Andreoiu

31S MED
A. Boso

Shape coexistence 188,190Hg
P.R. John, M. Siciliano

Excited states in 116,114Ba
J. Smith, G. Jaworski

Octupole in 118Ba
J.J Valiente-Dobon

Shape coexistence 60Zn
D. Mengoni, V. Modamio

Isospin mixing in 60Zn
S. Ceruti, A. Mentana

65Ga via (d,p)
V. Modamio

Resonant states
S. Leoni, B. Fornal

Lifetime in 107,109Sb
D. Testov

Plunger commissioning
Ch. Fransen

High spin structure of 84Br
A. Goasduff, D. Verney

Coulex of 66Zn
K. Hadyńska, M. Rocchini

N, number of neutrons
GALILEO Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>High spin structure of ^{84}Br</td>
<td>A. Goasduff, D. Verney</td>
</tr>
<tr>
<td>^{34}Ar MED</td>
<td>C. Andreoiu</td>
</tr>
<tr>
<td>^{31}S MED</td>
<td>A. Boso</td>
</tr>
<tr>
<td>Shape coexistence $^{188,190}\text{Hg}$</td>
<td>P.R. John, M. Siciliano</td>
</tr>
<tr>
<td>Excited states in $^{116,114}\text{Ba}$</td>
<td>J. Smith, G. Jaworski</td>
</tr>
<tr>
<td>Shape coexistence ^{60}Zn</td>
<td>D. Mengoni, V. Modamio</td>
</tr>
<tr>
<td>Octupole in ^{118}Ba</td>
<td>J.J Valiente-Dobon</td>
</tr>
<tr>
<td>Isospin mixing in ^{60}Zn</td>
<td>S. Ceruti, A. Mentana</td>
</tr>
<tr>
<td>Lifetime in $^{107,109}\text{Sb}$</td>
<td>D. Testov</td>
</tr>
<tr>
<td>Resonant states</td>
<td>S. Leoni, B. Fornal</td>
</tr>
<tr>
<td>^{65}Ga via (d,p)</td>
<td>V. Modamio</td>
</tr>
<tr>
<td>Coulex of ^{66}Zn</td>
<td>K. Hadyńska, M. Rocchini</td>
</tr>
<tr>
<td>Plunger commissioning</td>
<td>Ch. Fransen</td>
</tr>
<tr>
<td>Shape coexistence ^{60}Zn</td>
<td>D. Mengoni, V. Modamio</td>
</tr>
<tr>
<td>^{34}Ar MED</td>
<td>C. Andreoiu</td>
</tr>
<tr>
<td>^{31}S MED</td>
<td>A. Boso</td>
</tr>
</tbody>
</table>

22 of 31
GALILEO Experiments

High spin structure of 84Br
A. Goasduff, D. Verney

34Ar MED
C. Andreoiu

31S MED
A. Boso

Shape coexistence 60Zn
D. Mengoni, V. Modamio

Isospin mixing in 60Zn
S. Ceruti, A. Mentana

Excited states in 116,114Ba
J. Smith, G. Jaworski

Octupole in 118Ba
J.J Valiente-Dobon

Shape coexistence 188,190Hg
P.R. John, M. Siciliano

Plunger commissioning
Ch. Fransen

Lifetime in 107,109Sb
D. Testov

High spin structure of 84Br
A. Goasduff, D. Verney

65Ga via (d,p)
V. Modamio

Resonant states
S. Leoni, B. Fornal

Coulex of 66Zn
K. Hadyńska, M. Rocchini

Lifetime in 107,109Sb
D. Testov

High spin structure of 84Br
A. Goasduff, D. Verney

65Ga via (d,p)
V. Modamio

Resonant states
S. Leoni, B. Fornal

Coulex of 66Zn
K. Hadyńska, M. Rocchini

N, number of neutrons
GALILEO Experiments

Shape coexistence 188,190Hg
P.R. John, M. Siciliano

Excited states in 116,114Ba
J. Smith, G. Jaworski

Octupole in 118Ba
J.J Valiente-Dobon

Shape coexistence 60Zn
D. Mengoni, V. Modamio

Isospin mixing in 60Zn
S. Ceruti, A. Mentana

34Ar MED
C. Andreoiu

31S MED
A. Boso

Shape coexistence 84Br
A. Goasduff, D. Verney

Lifetime in 107,109Sb
D. Testov

Resonant states
S. Leoni, B. Fornal

65Ga via (d,p)
V. Modamio

Plunger commissioning
Ch. Fransen

High spin structure of 84Br
A. Goasduff, D. Verney

Coulex of 66Zn
K. Hadyńska, M. Rocchini
GALILEO Experiments

Shape coexistence $^{188,190}\text{Hg}$
P.R. John, M. Siciliano

Shape coexistence ^{60}Zn
D. Mengoni, V. Modamio

Isospin mixing in ^{60}Zn
S. Ceruti, A. Mentana

Resonant states
S. Leoni, B. Fornal

Lifetime in $^{107,109}\text{Sb}$
D. Testov

High spin structure of ^{84}Br
A. Goasduff, D. Verney

Coulex of ^{66}Zn
K. Hadyńska, M. Rocchini

Excited states in $^{116,114}\text{Ba}$
J. Smith, G. Jaworski

Octupole in ^{118}Ba
J.J Valiente-Dobon

^{34}Ar MED
C. Andreoiu

^{31}S MED
A. Boso

^{65}Ga via (d,p)
V. Modamio

^{126}Zn
N.= 126

^{82}Zn
Z. = 82

^{50}Zn
Z. = 50

^{20}Zn
Z. = 20

^{8}Zn
Z. = 8

N. = 8

N. = 20

N. = 50

N. = 82

N, number of neutrons
Mirror Energy Difference in mirror nuclei A=31

- High-spin states in mirror 31P and 31S
- $J > 13/2$ states not yet observed in 31S
- 12C@50 MeV + 24Mg
- Experiment in March 2016
- Analysis in early stage, but already higher spin states visible

A. Boso, S.M. Lenzi., F. Recchia
Study of Isospin symmetry in 60Zn

- Coulomb interaction breaks the isospin symmetry \Rightarrow Isospin Mixing
- E1 transitions (as Giant Dipole Resonance decay) in N=Z nuclei are sensitive to the degree of mixing
- Isospin mixing decreases as the excitation energy increases
- Comparison of yield of GDR in a N=Z nucleus to the one of N\neqZ allow to extract the isospin-mixing probability

<table>
<thead>
<tr>
<th>Reaction</th>
<th>CN</th>
<th>E_{beam} [MeV]</th>
<th>σ_{fusion} [mb]</th>
<th>E^* [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>32S + 28Si</td>
<td>60Zn*</td>
<td>86</td>
<td>480</td>
<td>47</td>
</tr>
<tr>
<td>32S + 30Si</td>
<td>62Zn*</td>
<td>75</td>
<td>300</td>
<td>47</td>
</tr>
<tr>
<td>32S + 28Si</td>
<td>60Zn*</td>
<td>110</td>
<td>880</td>
<td>58</td>
</tr>
<tr>
<td>32S + 30Si</td>
<td>62Zn*</td>
<td>98</td>
<td>800</td>
<td>58</td>
</tr>
</tbody>
</table>

S. Ceruti, A. Mentana., C. Michael
Study of Isospin symmetry in 60Zn

- LaBr$_3$:Ce Detection high-energy γ rays Good Efficiency ($\epsilon \approx 1\% @ E = 16\text{MeV}$)
- GALILEO Detection low-energy γ rays and identification of reaction channels
- The coincidence between GALILEO & LaBr$_3$:Ce detectors allow to have a clean selection of the fusion reaction channel

![Graphs showing n gated and GDR]**
Shape Coexistence in 60Zn

- Study of side band of 60Zn
- Experiment performed in May 2016
- Nearline analysis: spectrum of 61Zn
Shape coexistence in the neutron-deficient Hg isotopes

- Shape coexistence in 188Hg
- Experiment performed in March 2016
- Early stage analysis

![Diagram showing excitation energy and mass number for Hg isotopes.](This Presentation)
Shape coexistence in the neutron-deficient Hg isotopes

- Shape coexistence in 188Hg
- Experiment performed in March 2016
- Early stage analysis
Shape coexistence in the neutron-deficient Hg isotopes

- Shape coexistence in 188Hg
- Experiment performed in March 2016
- Early stage analysis
Future of Galileo

Upgrade of Galileo with 10 tripple clusters

A. Goasduf
Summary

- GALILEO is a permanent spectrometer available at LNL
- Its first implementation, Phase-1, is now operational with 25 detectors
- GALILEO will make use of various ancillary detectors managed by national and international collaborations.
- First campaign GALILEO Phase-1 in 2015-2017 NW + Euclides + plunger + ...
- It is expected to represent the resident γ-ray spectrometer, in combination with AGATA, with the advent of RIBs at SPES.
- Prototype of the tripple cluster expected soon
Thank you for your attention

Thank you for your attention
Thank you for your attention

- If you like Galileo, you will also like

Byobu Museum
[Review Rating: 7 Reviews] #40 of 94 things to do in Sumida
Specialty Museums, Museums
Outlook
Outlook

![Graph showing photopeak efficiency at 1 MeV / 0.5 deg](image)

- 40 GASP
- 30 GASP + 10TC at 90
- 30 GASP + 10TC close to 90
- 30 GASP + 10TC backward and forward