Physics Highlights from the AGATA Campaign at Legnaro National Laboratory

Sean J Freeman The University of Manchester
Development of the Scientific Programme

• A lot of discussions about tracking array physics in the years up to the decision to site AGATA at Legnaro.
• Kick-off science workshop Legnaro Nov 2007: 23 (48 institutions from 16 countries) LOIs generated for PAC June 2008.
• Physics workshop Istanbul May 2010: Further 7 LOIs added.
AGATA @ LNL

Main Aim:
demonstrate the feasibility of the gamma-ray tracking concept and validate the AGATA Demonstrator

Explore physics opportunities:
a subsequent experimental campaign at LNL to exploit the unique features of the Demonstrator, particularly the coupling to PRISMA
LNL Opportunities

- Expertise in multi-nucleon transfer
- Coupling to PRISMA Spectrometer
- Experience with CLARA + PRISMA
- Beam variety with accelerator system: particularly medium and heavy beams at >6 MeV/A

Majority of Letters of Intent use multi-nucleon transfer as the population mechanism taking advantage of PRISMA and beams in 6-7 MeV/A
AGATA Opportunities

CLARA:
Efficiency at 1MeV: ~2.6%
Peak/Total: ~40%
Angles covered: from 102° to 180°
(½ of the efficiency located at 102°)
FWHM, β~10%, 1MeV: 7 to 10 keV

AGATA DEMONSTRATOR:
Efficiency at 1MeV: ~6% at 14cm
Peak/Total: ~50%
Angles covered: from ~135° to 180°
FWHM, β~10%, 1MeV: <4 keV

All of Letters of Intent benefit from improved spectral quality obtained from localisation of gamma interactions in AGATA and the majority from determination of ion trajectories using PRISMA.

In particular, Doppler-based lifetime techniques benefit greatly from improved resolution and angular definition; many proposals suggest recoil-distance measurements.

90Zr@350 MeV average energy, Gaussian dispersion with σ=20%
PAC Proposals and Campaign Operation

After technical and scientific checks, physics proposals submitted from June 2009: 20 approved with a total of 142 days (about 3500 hours) approved very little overlap in scientific cases (partly through coordination through workshops, partly due to the profusion of ideas).

In-beam commissioning and technical validation in 2009. Physics campaign began in February 2010 until December 2011.
Ancillary Devices

PRISMA: magnetic spectrometer with trajectory reconstruction to identify reaction products

DANTE: MCP target array defines a fraction of product trajectories not in acceptance of PRISMA

TRACE: segmented Si E-DE telescopes

HELEN: BaF₂ multiplicity filter

HECTOR: large volume LaBr₃

PLUNGER: RDM Lifetimes
Highlights from the Legnaro Campaign

- 20 experiments
- 142 days
- 3500 hours
- 19 papers in PRL, PLB, PRC plus a couple under review
- Many more contributions to workshops and conferences.

- Inelastic scattering
- Coulex
- Multi-nucleon transfer
- Fusion-evaporation
- Fission
- Alpha transfer

Published experiments:
- Mostly 5 triple clusters
- A few with 4
- A couple with 3
- Physics results on 40K from commissioning with only 1

THE REVIEWER’S POSIONED CHALICE:
Much excellent physics - have to select highlights – can’t please everyone.
But even those selected – they might not be pleased.
Apologies for the wrong emphasis, simplifying to the extent of trivialising, missed subtle points or mistakes!
Members of the are likely to give better answers to questions....
Pygmy Dipole Resonances (PDR) via HI Inelastic Scattering in 208Pb

Close to particle threshold, excess of E1 strength corresponding to the oscillation of the neutron skin about the core – strong influence on r-process nuclear synthesis and can probe equation of state. Transition densities are surface peaked – HI inelastic scattering should be a useful probe.

Position definition of particles and γ rays using TRACE and AGATA allow Doppler correction. High segmentation in both allows detail angular distributions. Cross sections deduced by normalisation to elastics – well described by reaction modeling, as are strong states with known B(E2) and B(E3).

- Good correspondence of 1^- states with (γ,γ')
- Strong disagreement in measured cross sections with those expected from $B(E1)$ and standard form factors (similar to Coulex only). Doesn’t reproduce the particle angular distributions, where available.
- Discrepancies due to nuclear contributions.
- New form factor (double folding with M3Y) and transition density (HF+RPA) developed - strong isoscalar PDR characteristics (p&n in phase inside, with strong surface n).
- Good tool for E1 and higher multipoles (high-lying E2 excitations seen). Similar studies with radioactive beams on 13C target possible.
Multipole Responses in 90Zr, 140Ce and 124Sn

Technique extended to studies of E1 and higher multipoles in other systems.

- 124Sn: correlations between HI inelastic scattering against previous $(\alpha,\alpha'\gamma)$ – similar DWBA analysis verified approach in another system to give comprehensive description.
- 124Sn: E2 population analysed in detail and compared to DWBA predictions with good agreement – evidence for PQR, quadrupole excitations of neutron skin.
- 90Zr and 140Ce: detailed spectroscopic investigations with the new tool.

AGATA & TRACE: 17O@340 MeV +124Sn
Krysiek et al. PRC 93, 044330 (2016)
AGATA & TRACE: 17O@340 MeV +140Ce
Crespi et al. PRC 91, 024323 (2015)
AGATA & TRACE: 17O@340 MeV +90Zr
Super-deformed and triaxial states in 42Ca

Super-deformed configurations in light systems arguably more accessible to theoretical modeled and are connected to low-lying states via visible transitions.

Low-energy Coulex experiment aim to measure E2 matrix elements of transitions populating low-lying states including SD side bands.

Position definition of particles and γ rays using DANTE and AGATA allow Doppler correction.

- First population of SD bands in Coulex.
- Populate 0, 2 and 4$^+$ states of the GSB and SDB.
- Extract quadrupole deformation for the 0 and 2$^+$ states.
- Spherical GS shape.
- $\beta=0.43(2)$ and $\beta=0.45(2)$ for the SD 0 and 2$^+$ states.
- Triaxiality in SD band $\gamma=13^\circ(6)$ – non-axial character of SD bands in $A=40$ region for the first time.
- General picture of spherical GSB and slightly triaxial SDB reproduced in calculations using shell-model and beyond-mean-field approaches.
Lifetimes in Neutron-Rich Zn and Cu Isotopes

Region above 68Ni: single-particle migration, e.g. “$\pi f_{5/2}$” falls with N crossing “$\pi p_{3/2}$” to assume the gs in 75Cu – assess nature of low-lying states in odd isotopes using lifetimes.

In fp shell, increases in collectivity seen on approaching $N=40$ reproduced in SM only using $pf_{5/2}g_{9/2}^+d_{5/2}$ space. Probe $d_{5/2}$ occupation and collectivity via $B(E2)$. Done with RNB Coulex – peak at $N=44$, but at $N=42$ in Ge and Se.

Good resolution needed in plunger spectra to resolve shifted and unshifted components – aided by the angular definition provided by tracking.

- Yrast 2^+ lifetimes in 70,72,74Zn – maximal collectivity at $N=42$, similar to Ge and Se.
- $B(E2: 4\rightarrow2)$ show significant discrepancies from previous measurements AND theory, especially the unusually large lifetime of the 4^+ state in 74Zn. Ratios to $B(E2: 2\rightarrow0)$ in 72,74Zn less than 1, typical for non-collective states near closed shells.
- Side-feeding issues HAVE been carefully considered: unobserved feeding estimated in errors and sensitivity to Q from PRISMA investigated.
- In odd 69,71,73Cu, lifetimes used to help understand the structure of $7/2^-$ state, potentially arising from $\pi f_{5/2}$ or $\pi p_{3/2}$ coupled to a 2^+ core excitation.
Shape Evolution around $A=200$

Few-nucleon removal on 198Pt to investigate shape evolution probed by yrast levels in heavy neutron-rich nuclei in the approach to $N=126$. Notoriously difficult to produce: Eg. osmium: serendipitous isomer in 198Os allowed some delayed spectroscopy; two non-yrast states in 196Os

Beam-like fragments in PRISMA with 1/280 mass resolution. Condition on beam-like mass is an upper limit on the heavy fragment mass due to evaporation. Reduced if gate the Q value so energies are less than S_n. Further confirmation by γ coincidence.

- Yrast sequence in 196Os for the first time; yrast 6 and 8^+ in 200Pt.
- Comparisons with beyond mean-field calculations: smooth evolution from prolate (188Os) through transitional triaxial minima (190-192Os) to oblate (194-196Os), but with significant triaxial degree of freedom.
- 196Os – comparison with geometric limits shows close agreement with γ-unstable rotor.
- 200Pt – closer to $N=126$, additional yrast states reveal a transitional character between lighter γ-unstable systems and heavier nuclei that are predicted to be spherical.
Isospin Mixing in 80Zr: From Finite to Zero Temperature

Use the concentration of E1 strength in GDR to investigate isospin mixing via E1 isospin selection rule.

Fusion of self-conjugate nuclei to make a nominally isospin zero system.

First-step E1 decay depends on degree of isospin mixing.

Yields using AGATA => check statistical model.

Spectra from HECTOR on reference reaction => GDR parameters Only parameter left to fit 80Zr spectrum related to isospin mixing.

- Coulomb spreading width $\Gamma_{\gamma} = 12(3)$ keV @ $E^* = 54$ MeV.
- Deduced isospin mixing larger than some models expect – supports dynamical mechanism related to state lifetime (Wilkinson 1956).
- Combined with previous value at $E^* = 84$ MeV – check the temperature dependence and extract mixing at zero temp.
- Can related to the isospin mixing correction for ft values from super-allowed Fermi β decays.
Reactions between Heavy Ions

Target-like spectroscopy of actinide systems provide interesting benchmarks for models that provide predictions for the heaviest nuclei. Projectile-like spectroscopy in the vicinity of $N=82$ can be used in the development of shell-model descriptions of neutron-rich systems.

TOF differences between coincident products in PRISMA and DANTE reveal different mechanisms – used to identify transitions from highly-excited fission fragments or cold multi-nucleon transfer products. Angular intensity ratios enable some spin information from new transitions.

AGATA used to probe the population and survival of actinide products using observations of X rays and γ rays, and neutron-induced events in Ge as signal of neutron evaporation.

- Confirmed the feasibility of in-beam actinide spectroscopy in these reactions for few-neutron transfer and two proton removal.
- Unambiguous identification of new transitions in 134Xe, with conclusions about their excitation energies and spin changes.
- Combined with previous data sets established new levels above two long-lived isomers in 134Xe and compare to SM.
- Extensions to the spectroscopy of 240U, where ground state band extended beyond 20h, well-described by CR-HFB.
- Significant extension of the first-excited negative-parity band, which shows properties consistent with a $K^\pi=0^-$ octupole vibrational band.
Many other interesting publications:

Population of the 2+ mixed symmetry state of 140Ba with the α-transfer reaction
Stahl et al., PRC 92, 044324 (2015)

High-spin structure in 40K
Söderström et al., PRC 86, 054320 (2012)

Global properties of K hindrance probed by the γ decay of the warm rotating 174W nucleus
Vandone et al., PRC 88, 034312 (2013)

Lifetime measurements in neutron-rich 63,65Co isotopes using the AGATA demonstrator
Modamio et al., PRC 88, 044326 (2013)

Transition probabilities in neutron-rich 84,86Se
Litzinger et al., PRC 92, 064322 (2015)

Pair neutron transfer in 60Ni + 116Sn probed via γ-particle coincidences
Montanari et al., PRC 93, 054623 (2016)

Several publications are currently under review...

...analyses of several experiments are continuing.
Concluding remarks:

• A surprising range of exciting science – perhaps not anticipated before the initial workshops.
• Importance of a range of ancillary detectors – work for the in-house team.
• Productive in publications – but it takes some time on a new device – work for the scientific teams.
• AGATA is a demonstration of γ-ray tracking, but also of European collaboration at it’s best.