

Institut Laue-Langevin Nuclear and Particle Physics group

FIPPS FIssion Product Prompt gamma-ray Spectrometer

ILL: A. Blanc, A. Chebboubi, H, Faust, M. Jentschel, U. Kőster, P.Mutti, E. Ruiz-Martinez
CEA-Saclay: T. Materna
LPSC-Grenoble: G. Kessedjian, C. Sage, G. Simpson
University of Warsaw: W. Urban

- Nuclear physics at ILL
- EXILL
 - Motivation
 - Setup
 - Performances
- ► FIPPS
 - FIPPS layout
 - ➡ FIPPS Phase I and timeline
- Conclusion

Institut Laue-Langevin

- operates 58 MW high flux reactor with intense extracted neutron beams
- operating since 1971
- today 14 member states: F, D, UK, E, CH, A, I, CZ, S, HU, B, SK, DK, IN
- over **40 instruments**, mainly for neutron scattering
- user facility: 2000 scientific visitors from 45 countries per year

Nuclear Physics at ILL

The LOHENGRIN fission fragment separator:

 $\Delta A/A = 3E-4 - 3E-3$ $\Delta E/E = 1E-3 - 1E-2$

up to 10⁵/s mass-separated fission fragments ($T_{1/2} \ge \mu s$)

The LOHENGRIN recoil separator

NUSPIN 2016

Gamma-ray spectrometer (GAMS):

EXILL

Motivation

SetupPeformances

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

EXogam @ ILL

High efficiency germanium array

58 MW high flux reactor with intense extracted neutron beams

=> γ-ray spectroscopy of cold neutron induced reactions on 14 stable and 3 actinide targets

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

EXILL

Motivation
 Setup
 Performances

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

EXILL campaign at PF1B: EXOGAM @ ILL

(October 2012 \rightarrow April 2013)

EXOGAM+GASP array: Provided by GANIL and LNL

235U and 241Pu targets with thick backing

EXILL campaign at PF1B: EXOGAM @ ILL

(October 2012 \rightarrow April 2013)

EXOGAM+GASP array: Provided by GANIL and LNL

+ FATIMA LaBr array for ½ cycle

235U and 241Pu targets with thick backing

EXILL campaign at PF1B: EXOGAM @ ILL

(October 2012 \rightarrow April 2013)

EXOGAM+GASP array: Provided by GANIL and LNL

+ FATIMA LaBr array for 1/2 cycle

Collimation:

φ12 mm "pencil" neutron beam

235U and 241Pu targets with thick backing

Fission targets

Targets **sandwiched between dense backings** for rapid stopping of fission fragments.

1. ²³⁵U-Zr/Sn, nominal fission rate 70 kHz

3 layers UO₂ (total 575 μ g/cm² of 99.7% enriched ²³⁵U) laminated with Sn between 15 μ m thick Zr foils (nuclear grade, <50 ppm Hf)

2. ²³⁵U-Be, nominal fission rate 90 kHz

1 layer UO_2 (675 µg/cm² of 99.7% enriched ²³⁵U) glued with thin layer of cyanoacrylate between 25 µm thick Be foils

3. ²⁴¹Pu-Be, nominal fission rate 70 kHz

1 layer PuO₂ (300 µg/cm² of 78.6% ²⁴¹Pu, plus non-fissile ²⁴⁰Pu and ²⁴²Pu) glued with thin layer of cyanoacrylate between 25 µm thick Be foils ²⁴¹Am daughter freshly separated and target prepared at Kernchemie Mainz

²⁴¹Pu target and its inner vacuum chamber

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

²⁴¹Pu target and its inner vacuum chamber

²⁴¹Pu target and its inner vacuum chamber

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

New triggerless DAQ

Requirements:

- Handle high event rate (>600 kHz)
- Minimize dead time

- Accurate timing
- High data throughput

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

EXILL installation within 10 days

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

EXILL

Motivation Setup Performances

NUSPIN 2016

Institut Laue-Langevin, blanc@ill.fr

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

⁹²**Rb**: gamma-gamma spectrum **gated on 142-734 keV** γ-rays

W. Urban, ILL

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

⁹²**Rb**: gamma-gamma spectrum **gated on 142-734 keV** γ-rays

Institut Laue-Langevin, blanc@ill.fr

FOR SCIENCE

NUSPIN 2016

⁹²**Rb**: gamma-gamma spectrum **gated on 142-734 keV** γ-rays

Much higher statistics => allow studying much weaker populated nuclei

W. Urban, ILL

FOR SCIENCE

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

Selection of results

"Germanium-gated γ-γ fast timing of excited states in fission fragments using the EXILL&FATIMA spectrometer", J.M. Regis & al., NIM A, 763, Pages 210–220

• "Test of the SO(6) selection rule in 196Pt using coldneutron capture", J. Jolie et al., NuclearPhysics A 11/2014

■"B(E2;2+1→0+1) value in Kr90", J.M. Regis & al.,
Phys. Rev. C 90, 067301

Near-yrast excitations in nucleus As 83 : Tracing the π g 9 / 2 orbital in the Ni 78 region", P. Bączyk & al., Physical Review C 91(4) · April 2015

• "Neutron-proton multiplets in the nucleus ⁸⁸Br", M. Czerwinski & al., Physical Review C 92(1) · July 2015

• *The mutable nature of particle-core excitations with spin in the one-valence-proton nucleus 133Sb*, G.Bocchi & al., Physics Letter B, accepted this week

Selection of results

"Germanium-gated γ-γ fast timing of excited states in fission fragments using the EXILL&FATIMA spectrometer", J.M. Regis & al., NIM A, 763, Pages 210–220

• "Test of the SO(6) selection rule in 196Pt using coldneutron capture", J. Jolie et al., NuclearPhysics A 11/2014

*Near-yrast excitations in nucleus As 83 : Tracing the π g*9 / 2 orbital in the Ni 78 region", P. Bączyk & al.,
Physical Review C 91(4) · April 2015

• "*Neutron-proton multiplets in the nucleus* ⁸⁸*Br*", M. Czerwinski & al., Physical Review C 92(1) · July 2015

• *The mutable nature of particle-core excitations with spin in the one-valence-proton nucleus 133Sb*, G.Bocchi & al., Physics Letter B, accepted this week

FIssion Product Prompt γ-ray Spectrometer FIPPS layout FIPPS Phase I and timeline

γ -ray detection with Ge array (EXILL-like)

/ Fission target with a thick backing

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

γ -ray detection with Ge array (EXILL-like)

Spectrometer

/ Fission target with a thick backing

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

 γ -ray detection with Ge array (EXILL-like)

/ Fission target with a thick backing

Spectrometer

Moveable (for fast neutrons studies)
Large acceptance ~10% (close to Ge array efficiency)
Not necessarily good mass resolution (~3-4 is acceptable)
Focal plan (for fission and 0.1 us isomers studies)
Allows Ekin measurement

Allows dE/dx measurement

 γ -ray detection with Ge array (EXILL-like)

/ Fission target with a thick backing

Spectrometer

Allows dE/dx measurement

- Gas-Filled Magnet: design on going
- Ionization chambers \rightarrow LPSC know-how (in used at Lohengrin since 20 years)

FIssion Product Prompt γ-ray Spectrometer FIPPS layout FIPPS Phase I and timeline

FIPPS location

FIPPS Position:

- Thermal neutron guide
- Flux: 7.10⁸ n.cm⁻².s⁻¹ prior collimation
- γ -ray background 5 to 10 times better than at PF1b

FIPPS phase I: Ge array

8 clovers (CANBERRA 50mm x 80mm) in a central ring

- Not segmented
- Permanently at ILL
- Large space around the ring for additional detectors

TECHNICAL DATA SHEET

CANBERRA CLOVER CLOV 4 X 50 X 80 BCT for FIPPS Clover : crystal diameter 50mm – length 80mm Each Clover detector will be an assembly of 4 individual crystals with front tapering.

SPECIFICATIONS FOR EACH INDIVIDUAL CRYSTAL

ENERGY RESOLUTION:

- For 1.33MeV gamma rays from a ⁶⁰Co source, the energy resolution of each crystal will be ≤ 2.15keV full width half maximum (FWHM).
- For 122keV gamma rays from a ⁵⁷Co source, the energy resolution of each crystal will be ≤ 1.20keV FWHM.
- These resolutions will be measured with a main spectroscopy amplifier time constants of ≥ 6µs. For each measurement, the total count rate will be ≤ 1000 counts/s and the total number of counts in the photopeaks will be ≥ 10⁵.

SIZE OF EACH INDIVIDUAL CRYSTAL:

- The diameter of the crystal will be 50mm before shaping.
- The length of the crystal will be a nominal of 80mm.
- The relative efficiency at 1.33MeV will be ≥ 23% after shaping, source at 25cm from the front face of each crystal, mean value on the 4 crystals.

PEAK TO COMPTON:

 The measured Peak to Compton for 1.33MeV gamma rays (measured after IEC 973 international norm) should have a minimum value of 45.

Phone contact in formation

Bendur/Dennod(52) 241 8530 - Canada 905-600-5572 - Contral Darrope 1430(220.57000 - Firm or (35)) 39-485200 - Germany (49) 6142 75820 Japan 81.5-2005-808 - Bannie (495529-657 - Swodon-46 10 H 485 00 - United Nayghan(44)(25 83853 - United State (1) 203-238-258) For other international representative offices, via our with site: <u>http://www.carbura.com</u> or contrat the CANIBBIA Linguisticity office or CANBBIAA U.S.A. office Juncia In France III.

FIPPS phase I: Ge array

8 clovers (CANBERRA 50mm x 80mm) in a central ring

- Not segmented
- Permanently at ILL
- Large space around the ring for additional detectors

=> other Ge, LaBr, neutron detectors, ...

TECHNICAL DATA SHEET

CANBERRA CLOVER CLOV 4 X 50 X 80 BCT for FIPPS Clover : crystal diameter 50mm – length 80mm Each Clover detector will be an assembly of 4 individual crystals with front tapering.

SPECIFICATIONS FOR EACH INDIVIDUAL CRYSTAL

ENERGY RESOLUTION:

- For 1.33MeV gamma rays from a ⁸⁰Co source, the energy resolution of each crystal will be ≤ 2.15keV full width half maximum (FWHM).
- For 122keV gamma rays from a ⁵⁷Co source, the energy resolution of each crystal will be ≤ 1.20keV FWHM.
- These resolutions will be measured with a main spectroscopy amplifier time constants of ≥ 6µs. For each measurement, the total count rate will be ≤ 1000 counts/s and the total number of counts in the photopeaks will be ≥ 10⁵.

SIZE OF EACH INDIVIDUAL CRYSTAL:

- The diameter of the crystal will be 50mm before shaping.
- The length of the crystal will be a nominal of 80mm.
- The relative efficiency at 1.33MeV will be ≥ 23% after shaping, source at 25cm from the front face of each crystal, mean value on the 4 crystals.

PEAK TO COMPTON:

 The measured Peak to Compton for 1.33MeV gamma rays (measured after IEC 973 international norm) should have a minimum value of 45.

Phone contact in formation

Bendur/Dennod(52) 241 8530 - Canada 905-600-5572 - Contral Darrope 1430(220.57000 - Firm or (35)) 39-485200 - Germany (49) 6142 75820 Japan 81.5-2005-808 - Bannie (495529-657 - Swodon-46 10 H 485 00 - United Nayghan(44)(25 83853 - United State (1) 203-238-258) For other international representative offices, via our with site: <u>http://www.carbura.com</u> or contrat the CANIBBIA Linguisticity office or CANBBIAA U.S.A. office Juncia In France III.

FIPPS phase I: Ge array

8 clovers (CANBERRA 50mm x 80mm) in a central ring

- Not segmented
- Permanently at ILL
- Large space around the ring for additional detectors

=> other Ge, LaBr, neutron detectors, ...

First 2 clovers delivery in september All the clovers by the end of the year

TECHNICAL DATA SHEET

CANBERRA CLOVER CLOV 4 X 50 X 80 BCT for FIPPS Clover : crystal diameter 50mm – length 80mm Each Clover detector will be an assembly of 4 individual crystals with front tapering.

SPECIFICATIONS FOR EACH INDIVIDUAL CRYSTAL

ENERGY RESOLUTION:

- For 1.33MeV gamma rays from a ⁸⁰Co source, the energy resolution of each crystal will be ≤ 2.15keV full width half maximum (FWHM).
- For 122keV gamma rays from a ⁶⁷Co source, the energy resolution of each crystal will be ≤ 1.20keV FWHM.
- These resolutions will be measured with a main spectroscopy amplifier time constants of ≥ 6µs. For each measurement, the total count rate will be ≤ 1000 counts/s and the total number of counts in the photopeaks will be ≥ 10⁵.

SIZE OF EACH INDIVIDUAL CRYSTAL:

- The diameter of the crystal will be 50mm before shaping.
- The length of the crystal will be a nominal of 80mm.
- The relative efficiency at 1.33MeV will be ≥ 23% after shaping, source at 25cm from the front face of each crystal, mean value on the 4 crystals.

PEAK TO COMPTON:

 The measured Peak to Compton for 1.33MeV gamma rays (measured after IEC 973 international norm) should have a minimum value of 45.

Phone contact information

Bendur/Dennod(52) 241 8530 - Canada 905-600-5572 - Contral Darrope 1430(220.57000 - Firm or (35)) 39-485200 - Germany (49) 6142 75820 Japan 81.5-2005-808 - Bannie (495529-657 - Swodon-46 10 H 485 00 - United Nayghan(44)(25 83853 - United State (1) 203-238-258) For other international representative offices, via our with site: <u>http://www.carbura.com</u> or contrat the CANIBBIA Linguisticity office or CANBBIAA U.S.A. office Juncia In France III.

FIPPS phase I: some ideas

Ideas from: _EXILL meetings

informal discussion with users (O. Litaize,

G. Kessedjian, O. Serot, G. Simpson, ...)

Nuclear structure:

- **DPM** measurements
 - \rightarrow we learnt a lot from the EXILL-DPM measurement
- plunger measurements
- g factor measurements
- new spectroscopy campaign

Fission:

• prompt γ-ray (NEA High Priority Request List for 235U and 239Pu)

- A. Oberstedt et al., PRC 87, 051602 (2013)
- \rightarrow possible observables: total γ -ray spectra, E γ distribution and multiplicity, per fission or per fragment pair
- \rightarrow EXILL data analysis difficult: need complex γ - γ - γ analysis with background from long-life isomers

• neutron emission

- \rightarrow neutron- γ correlations ??
- actinides (n,γ) measurements

(n, γ) on stable targets

(n, γ) on radioactive

(n, fission) on actinide targets

exotic targets

I	60Cu	61Cu	62Cu	63Cu	64Cu	65Cu
	23.7 M	3.333 H	9.673 M	STABLE	12.701 H	STABLE
	8: 100.00%	8: 100.00%	8: 100.00%	69.15%	2: 61.50%	30.85%
	59Ni	60Ni	61Ni	62Ni	63Νi	64Ni
	7.6E+4 Y	TABLE	STABLE	STABL	101.2 Υ	STABLE
	8: 100.00%	26223%	1.139995	3.6346	β-: 100.00%	0.9255%
	70.86 D 8: 100.00%	SPC0 STABLE 100%	60Co 1925.28 D β-: 100.00%	61Co 1.650 H β-: 100.00%	1.50 M β-: 100.00%	63Co 27.4 S β-: 100.00%

(n, γ) on stable targets

(n, γ) on radioactive

(n, fission) on actinide targets

Typical program foreseen in the coming 3-4 years (2-3 cycles/year):

(n, γ) on stable targets

(n, γ) on radioactive

(n, fission) on actinide targets

Typical program foreseen in the coming 3-4 years (2-3 cycles/year):

2016: cycle 3 (Nov.-Dec.): (n,γ) on stable targets (commissioning)

(n, γ) on stable targets

 (n, γ) on radioactive

(n, fission) on actinide targets

Typical program foreseen in the coming 3-4 years (2-3 cycles/year):

2016: cycle 3 (Nov.-Dec.): (n,γ) on stable targets (commissioning)

2017: cycle 1 (Jan.-March) : (n,γ) on stable targets, proposal deadline 15 Sept. 2016

(n, γ) on stable targets

 (n, γ) on radioactive

(n, fission) on actinide targets

Typical program foreseen in the coming 3-4 years (2-3 cycles/year):

2016: cycle 3 (Nov.-Dec.): (n,γ) on stable targets (commissioning)

2017: cycle 1 (Jan.-March) : (n,γ) on stable targets, proposal deadline 15 Sept. 2016
 cycle 2 (Aug.-Oct.): (n,γ) on radioactive targets, proposal deadline 14 Feb. 2017

(n, γ) on stable targets

 (n, γ) on radioactive

(n, fission) on actinide targets

Typical program foreseen in the coming 3-4 years (2-3 cycles/year):

2016: cycle 3 (Nov.-Dec.): (n,γ) on stable targets (commissioning)

2017: cycle 1 (Jan.-March) : (n,γ) on stable targets, proposal deadline 15 Sept. 2016
 cycle 2 (Aug.-Oct.): (n,γ) on radioactive targets, proposal deadline 14 Feb. 2017
 cycle 3 (Nov.-Dec.): (n,fission) on closed 235U target

(n, γ) on stable targets

 (n, γ) on radioactive

(n, fission) on actinide targets

Typical program foreseen in the coming 3-4 years (2-3 cycles/year):

- **2016:** cycle **3** (Nov.-Dec.): (n,γ) on stable targets (commissioning)
- 2017: cycle 1 (Jan.-March) : (n,γ) on stable targets, proposal deadline 15 Sept. 2016 cycle 2 (Aug.-Oct.): (n,γ) on radioactive targets, proposal deadline 14 Feb. 2017 cycle 3 (Nov.-Dec.): (n,fission) on closed 235U target
- 2018: cycle 1: (n,fission) on closed 233U target cycle 2: (n,fission) on 235U target (plunger / magnetic moment commissioning)
- 2019: cycle 1: (n,fission) on 235U (GFM commissioning) cycle 2: (n,fission) on closed 241Pu target cycle 3: (n,fission) on closed 239Pu target

Conclusion

Conclusion (1)

All EXILL requirements achieved:

- Halo-free pencil neutron beam (1 cm²), $\sim 10^8$ n.cm⁻².s⁻¹
- Safe target environment allowing (n,f) of actinides targets (²³⁵U, ²⁴¹Pu)
- Up to **50 Ge crytals and 16 LaBr scintillators** operating simultaneously
- Trigerless DAQ, >10 kHz/crystal, >600kHz total

~100 days of data taking

- → >60 Tb of data stored, storage shared between:
 - CC IN2P3 Lyon

ILL

LPSC-Grenoble

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016

Conclusion (2)

FIPPS:

- Phase I: Ge array
 - safe-handling of various actinide targets \rightarrow **ILL know-how**
 - halo-free pencil beam of neutron \rightarrow experimentally validated
 - safe operation of Germanium array close to neutron beam \rightarrow experimentally validated
 - Itriggerless DAQ with high-rate capability (~6kHz/crystal) → experimentally validated
 - fission veto/tagging using scintillating active target \rightarrow being tested
- Phase II: Ge array + Spectrometer
 - Designing phase

→ possible use of 233U, 235U, 239Pu, 241Pu, 245Cm, 247Cm, 249Cf, 251Cf, ...

Conclusion (3)

All FIPPS clovers at the ILL by the end of 2016

=> commissioning with (n,γ) measurements during the last cycle of 2016

=> FIPPS available for proposals for beamtime in 2017 (see www.ill.fr/users for more details)

Autumn 2016 council

Proposal dead line: 15 September 2016 (midnight European time); web opens for submission on 1 July Subcommittee meetings: 22-23 November 2016

Scientific Council: 24-25 November 2016

Send an email to blanc@ill.fr, koester@ill.fr or jentschel@ill.fr before submitting

Institut Laue-Langevin, blanc@ill.fr

The EXILL collaboration

Institut Laue-Langevin, blanc@ill.fr

NUSPIN 2016