Study of high spin states and isomers in nuclei near Z=82

NuSpIn

_																							
8	38	▲ _									R a202 0.7 мs	Ra203	Ra204 57 MS	Ra205 021 s	Ra206 024 8	Ra207 1.38	Ra208	Ra209 468	Ra210 3.7 s	Ra211 138	Ra212	Ra213 2.74 м	Ra214 2.46 s
8	37	ΪZ							Fr199 12 MS	Fr200	Fr201 synas	Fr202 023 8	Fr203	Fr204	Fr205	Fr206	Fr207	Fr208 \$91 s	Fr209 200 s	Fr210	Fr211 3.10 м	Fr212 200 м	Fr213 3468
8	36	•					Rn196	Rn197 65 MS	Rn198 B4 MS	Rn199 0 <i>6</i> 2 s	Rn200	Rn201 7.1 s	Rn202	Rn203	Rn204	Rn205	Rn206 5 <i>6</i> 7 м	Rn207 925 M	Rn208 24.35 M	Rn209 28.5 M	Rn210 24 H	Rn211	Rn212 239 м
8	35				At193 40 MS	At194 -40 MS	At195	At196	At197 0.37 s		At199	At200	At201	At202	At203 74 м	At204 92 м	At205 262 м	At206 106 M	At207	At208	At209 541 H	At210	At211 7214 H
8	34		Po190 2.53 MS	Po191 22 MS	Po192	Po193	Po194 0.352 s	Po195 454 8	Pol 583		198 x	Ро199 4.59 м	Ро200 109 м	Ро201 153 м	Ро202 44.7 м	Ро203 ълм	Ро204 3.53 н	Ро205 1 66 н	Ро206 вяр	Ро207 580 н	Po208 2.558 y	Po209	Po210
8	33	Bi188 44 MS	Bi189 728 MS	Bi190	Bi191 12.3 8	Bi192 3468	Bi193	Bi194 95 8	Bi	¹⁹⁵ Bi	. <mark>97</mark>	Bi198 10.3 м	Bi199	Bi200 ≆4м	Bi201	Bi202	Bi203	Bi204	Bi205	Bi206 6243 D	Bi207	Bi208	Bi209
8	2	Pb187	Pb188 24 S	Pb189 51 s	Pb190	Pb191	Pb192	Pb193	Pb1		/196 м	Рb197 вж	Pb198	Рb199 ялж	Pb200	Рb201 9.35 н	Pb202 \$250 Y	РЬ203 б <i>в</i> тэн	Pb204	Pb205	Pb206 24.1	Pb207	Pb208 22.4
8	81	T1186	T1187 -51 s	T1188	T1189	T1190	T 1191	Т1192 86м	T1193	33.D.M	T1195	T1196 ценн	Т1197 284 н	T1198	T1199 742 H	T1200	T1201	T1202	T1203 29.524	T1204	T1205 70476	T1206	T1207
8	30	Hg185	Hg186	Hg187	Hg188	Hg189	Hg190	Hg191 49 M	Hg192	Нg193 энон	Hg194	Нg195	Hg196	Hg197 6414 H	Hg198	Hg199	Hg200	Hg201	Hg202	Hg203	Hg204	Hg205	Hg200
5	'9	Au184	Au185	Au186	Au187	Au188	Au189	Au190	Au191	Au192	Au193	Au194 3802 H	Au195	Au196	Au197	Au198	Au199	Au200	Au201	Au202	Au203	Au204	Au205
5	'8	Pt183	Pt184	Pt185	Pt186	Pt187	Pt188	Pt189	Pt190	Pt191	Pt192	Pt193	Pt194	Pt195	Pt196	Pt197	Pt198	Pt199	Pt200	Pt201	Pt202		
5	77	Ir182	Ir183	Ir184	Ir185	Ir186	Ir187	Ir188	Ir189	Ir190	Ir191	Ir192	Ir193	Ir194	Ir195	Ir196	Ir197	Ir198	Ir199	2.3 %	44 A	1	
5	6	Os181	Os182	Os183	Os184	Os185	Os186	Os187	Os188	Os189	Os190	Os191	Os192	Os193	Os194	Os195	Os196		-103	1			
5	′5	Re180	Re181	Re182	Re183	Re184	Re185	Re186	Re187	Re188	Re189	Re190	Re191	Re192	Re193			J			NI		
5	′4	W179	W180	W181	W182	W183	W184	W185	W186	W187	W188	W189	W190	183		1							
5	'3	Ta178	Ta179	Ta180	Ta181	Ta182	Tal83	Ta184	Ta185		Ta187	Ta188	10 M										
5	2	Hf177	Hf178	Hf179	Hf180	Hf181	Hf182	Hf183	494 M Hf184	Hf185	Hf186	-20 3				Т	'ann	nov	Ro	V			
	1	Lu176	Lu177	Lu178	Lu179	42.30D Lu180	Lu181	Lu182	Lu183	Lu184	25.8	I	S	hime	ervi	sor	Dr	Go	nal.	Mu	khe	eriee	2
		2.59	6.734 D	28.4 M	4.59 H	5.7 M	3.53	211 M	583	20.5	J			apt			L 1.	00	Pul	I'I'U	nine a	1900	
									(114)		V	aria	able	En	erg	y Cy	clo	tror	n Ce	ntre	e

-

Aim of the Study

Experimental investigation of the effect of the effect and relative importance of these high- j proton and neutron orbitals on the high spin states in the nuclei near Z=82.

Introduction
Aim of the Study
Experimental Details
Data Analysis
Conclusion

The relative position of high-j proton ($h_{9/2}$, $i_{13/2}$) and neutron ($i_{13/2}$) orbitals for nuclei in the mass region A~190 -200 with Z~82 according to the spherical shell model.

Nilsson Single Particle Diagram

Band structures in odd-A Bi nuclei

- Low lying excited states correspond to spherical shape
- Magnetic rotational bands observed at excitation energy above 4MeV

Well developed band structures correspond to deformation

Much improved level scheme A. Herz´a`n et al., PRC **92**, 044310 (2015).

- \circ Onset of deformation at N=112.
- 750 (50) ns at 29/2⁽⁻⁾ is the highest spin isomer known in this nucleus.
- No state above 2923 keV is known even using heavy-ion induced reaction.
- Intensity of 457-keV is very weak in the prompt coincidence spectrum → indicates the presence of higher spin isomer.

Coincidence spectra gated by 886 keV γ ray

H. Pai et al., PRC **85**, 064317(2012) T. Lonnroth et al., PRC **33**,1641(1986)

Isomers in Bi, Po and At nuclei

Nucleus	States	Isomers (T _{1/2})	Nucleus	States	Isomers (T _{1/2})		
¹⁹³ Bi	29/2-	3(1) µs	100				
193 Bi	2 0/ 2 +	85(3) US	¹⁹² Po	11-	0.58(10) μs		
DI		85(5) με	¹⁹⁴ Po	11-	15(2) μs		
¹⁹⁵ Bi	29/2-	750(50) ns	¹⁹⁶ Po	11-	856(17) ns		
¹⁹⁷ Bi	29/2-	263(13) ns	¹⁹⁸ Po	11-	200(20) ns		
¹⁹⁷ Bi	31/2-	209(30) ns	²⁰⁰ Po	12+	0.75(5) μs		
¹⁹⁹ Bi	29/2-	168(13) ns	²⁰⁰ Po	11-	100(10) ns		
²⁰¹ Bi	29/2-	124(4) ns					
			11- →	$\pi i_{13/2} \otimes \pi h_{9/2}$			
Nucleus	States	Isomers (T _{1/2})	12+ →	νi _{13/2} -2			
		,	13/2+ -	v <i>i</i> _{13/2}			
¹⁹⁶ At	5+	11(2) μs	$29/2^{-} \rightarrow \pi h_{9/2} \otimes v12^{+}$				
¹⁹⁹ At	13/2+	0.58(13) µs	29/2+ →	((πh _{9/2})+2 ₈₊ (π i	$_{13/2})^{+1}(v f_{5/2})^{-2}_{0+})$		
²⁰⁵ At	29/2+	7.76(14) µs	31/2⁻ ➔	$\pi h_{9/2} \otimes v12^+$			

The proton and neutron excitations to $h_{9/2}$ and $i_{13/2}$ high-j orbitals give rise to isomers in these nuclei.

High spin isomer study in ¹⁹⁵Bi

HYbrid Recoil mass Analyzer (HYRA)

HYbrid Recoil mass Analyzer (HYRA)

Schematic representation of Focal plane chamber. Schematic representation of Focal plane detector system consisting of Multi-wire proportional counter (MWPC), 3 Si-pad detectors and one clover detector outside the focal plane chamber.

 ΔT_1 : Time (TAC) between target Clover and MWPC \rightarrow Start form MWPC and stopped by Target clover :Time of flight of ER 2D of MWPC (cathode) vs Siidentifies Evaporation Residue (ER)

Trigger: (MWPC .and. Si) .or. Clover

A 2D between $\Delta T_2 \& \gamma$ energies of focal plane clover detector is used to determine the life time of the states by putting a gate on specific γ ray and projecting its counts on time axis.

Observance of 457 keV γ transition at the focal plane even after two half life (T_{1/2}) of the known 29/2⁽⁻⁾ [750(50) ns] isomeric state ensures the presence of another high spin isomer in ¹⁹⁵Bi.

In the sum energy gate life time of the two isomeric states are measured by fitting the data points using Eq. (1) considering the new isomer decaying through 457, 422 keV γ transitions as well as through115 and 150 keV γ transitions.

Systematic of Isomers

$$E_{3qp}^{A} = E_{1qp}^{A} + \frac{E_{2qp}^{A-1} + E_{2qp}^{A+1}}{2}$$

 $\pi h_{9/2} \bigotimes v_9$ - isomer in ¹⁹⁹Bi

Excitation Energy: 9⁻ State of Pb core ¹⁹⁸Pb -2231 keV ²⁰⁰Pb- 2183 keV ¹⁹⁹Bi=0 keV for πh_{9/2}

 $E^{A}_{3qp} = 0 + (2231 + 2183)/2 = 2207 \text{ keV}$

 $27/2^+: 2030 + \Delta \text{ keV}$

Configuration of the new isomer: $\pi i_{13/2} \bigotimes \nu_9^-$ TRS: Oblate Deformation

Eur. Phys. J. A (2015) **51**: 153 DOI 10.1140/epja/i2015-15153-5

Regular Article – Experimental Physics

THE EUROPEAN PHYSICAL JOURNAL A

The result has been published to T. Roy et. al., **EPJA 51**, 153 (2015).

A new high-spin isomer in ¹⁹⁵Bi

T. Roy¹, G. Mukherjee^{1,a}, N. Madhavan², T.K. Rana¹, Soumik Bhattacharya¹, Md.A. Asgar¹, I. Bala², K. Basu³, S.S. Bhattacharjee³, C. Bhattacharya¹, S. Bhattacharya^{1,b}, S. Bhattacharyya¹, J. Gehlot², S.S. Ghugre³, R.K. Gurjar², A. Jhingan², R. Kumar², S. Muralithar², S. Nath², H. Pai^{1,c}, R. Palit⁴, R. Raut³, R.P. Singh², A.K. Sinha³, and T. Varughese²

¹ Variable Energy Cyclotron Centre, Kolkata 700064, India

- ² Inter University Acclerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
- ³ UGC-DAE-CSR Kolkata Centre, SectorIII/LB-8 Bidhan Nagar, Kolkata 700098, India
- ⁴ Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005, India

Received: 25 August 2015 / Revised: 29 October 2015 Published online: 30 November 2015 – © Società Italiana di Fisica / Springer-Verlag 2015 Communicated by P. Woods

Conclusion

- Isomeric decay study has been carried out first time at focal plane of Hybrid Recoil mass Analyzer (HYRA) using fusion evaporation reaction of ³⁰Si beam on ¹⁶⁹Tm target at the beam energy of 168 and 145 MeV respectively.
- The decay of the known 3ms isomer in ¹⁹³Bi has been measured and the present half life agrees well with the earlier reported value.
- A new high spin isomer (31/2) of half-life 1.6(1)ms has been identified in ¹⁹⁵Bi. This new isomer's configuration has been assigned as $\pi i_{13/2} \otimes \nu_9$ with oblate deformation bassed on Total Routhian Surface (TRS) calculation.
- Present calculation suggests a strong shape driving effect of $i_{13/2}$ orbital over $h_{9/2}$ orbital. It will be interesting to see whether any rotational band structure builds on this state in future experimental studies.

Collaborators

G. Mukherjee (Supervisor) H. Pai Md. A. Asgar S. Bhattacharyya M. R. Ghoil T. K. Rana C. Bhattacharya S. Bhattacharya Soumik Bhattacharya T. Bhattacharjee

VECC

TIFR R. Palit S. Saha J. Sethi T. Trivedi B. S. Nauidu Shital Thakur S. V. Jadav R. Dhonti IUAC N. Madhavan S. Nath R. P. Singh S. Murlithar R. Kumar J. Ghelot T. Varughese I.Bala

R. K. Gurjar

UGC-DAE-CSR (Kolkata) A. K. Sinha S. S. Ghugre R. Raut S. S. Bhattachrjee K. Basu

> SINP A. Goswami

