

New developments of the Recoil Distance Doppler-Shift Technique

<u>Christoph Fransen</u>, A. Dewald, A. Blazhev, T. Braunroth, A. Goldkuhle, J. Jolie, J. Litzinger, C. Müller-Gatermann, F. Von Spee, D. Wölk, K.O. Zell Institut für Kernphysik, Universität zu Köln, Cologne, Germany

- A new plunger device for the GALILEO spectrometer @ LNL
 - mechanical constraints, construction
 - commissioning run at LNL in Feb. 2016: (re-)measurement of lifetimes in ¹⁸⁰Pt, ¹⁵⁴Sm, ¹⁸¹Ta
- Recent plunger experiments at GANIL: an overview
- Plunger experiment of our group at GANIL: "Evolution of the shell structure in the region of n-rich Ti isotopes"

New plunger device for the GALILEO spectrometer

- None of existing plunger devices can be used
- \rightarrow construction of GALILEO
- \rightarrow constraints in target chamber
- → usage with EUCLIDES Si detector array essential for future lifetime measurements with RDDS at GALILEO: particle detectors to separate weak reaction channels

Construction of a new plunger device for GALILEO

 \rightarrow Compact construction to avoid shielding of Euclides and HPGe detectors

- \rightarrow no separate piezo crystal and distance measuring system: feedback with motor solely
- \rightarrow Motor: compact motor PI type LPS-24.

Universität zu Köln – Institut für Kernphysik

New plunger device for GALILEO

Plunger in GALILEO chamber, EUCLIDES detector array removed

Solar cell calotte: Compact charged particle detector array under backward angle **Commissioning experiment with new plunger at LNL**

 → Prove the function of new plunger device in combination with GALILEO and particle detectors
 → continue very fruitful collaboration LNL – IKP Cologne.

3 RDDS measurements simultanously (4 days in Feb. 2016)

- 1. (re-)measurement of well-known lifetimes of yrast states in ¹⁸⁰Pt with ¹⁵⁴Sm(³²S,6n)¹⁸⁰Pt: known from plunger experiment of our group at JYFL.
- measurement of absolute target stopper distances with known lifetimes of ¹⁸¹Ta target backing facing beam using Coulomb excitation ¹⁸¹Ta(³²S,³²S*) and particle-γ coincidences.
- 3. determination of precisely known lifetimes in ¹⁵⁴Sm with Coulomb excitation ¹⁵⁴Sm(³²S,³²S*) and particle-γ coincidences.
- 4. study target heating effects using different beam currents (1 pnA 3 pnA).

1. Lifetimes in ¹⁸⁰Pt, reaction ¹⁵⁴Sm(³²S,4n)¹⁸⁰Pt

Universität zu Köln – Institut für Kernphysik

NUSPIN 2016

2. ¹⁸¹Ta Coulomb excitation

Determine absolute distances target – stopper from precisely known lifetimes

\rightarrow stable operation of new plunger device!

Universität zu Köln – Institut für Kernphysik

Recent plunge	r experiments	at GANIL:	an overview
----------------------	---------------	-----------	-------------

	\mathbf{Code}	$\mathbf{Spokesperson}$	Nuclei of Interest	Plunger
	E663	Ljungvall	$^{62,64,66}\mathrm{Fe}$	Orsay
	E669	Verney	$\sim^{83} \text{Ge}$	Orsay
2015	E664	Valiente-Dobon	$^{106,108}\mathrm{Sn}$	Cologne
	E682	Domingo-Pardo	$^{94}\mathrm{Ru}$	Cologne
	E672	Georgiev	$\sim^{208} \text{Pb}$	Cologne
2016	E696	Fransen	$\sim^{54} \mathrm{Ti}$	Cologne
2010	E708	Celikovic	73,75 Ga	Cologne
			I de la constante de	1

Nearly 9 weeks of beam-time for 7 experiments. Setup: AGATA + Plunger + VAMOS++

 \rightarrow spectra promizing

 \rightarrow in 2015: plunger instabilities due to beam instabilities

Universität zu Köln – Institut für Kernphysik

Plunger experiment on ^{106,108}Sn at GANIL

CodeSpokespersonNuclei of InterestE664Valiente-Dobon106,108 Sn

Reaction: ¹⁰⁶Cd + ⁵⁸Ni \rightarrow ^{106,108}Sn at E \approx 7.3 AMeV, $I \sim 0.5$ pnA **Plunger:** Eight distances between 10 μ m and 500 μ m

Spectrum received from Marco Sic

Universität zu Köln – Institut für Kernphysik

Plunger experiment on ⁹⁴Ru at GANIL

Reaction: ${}^{92}Mo + {}^{92}Mo \rightarrow {}^{94}Ru$ at $E \approx 7.8 \text{ AMeV}$, $I \sim 0.8 \text{ pnA}$ **Plunger:** Seven distances between 10 μ m and 4000 μ m

Universität zu Köln – Institut für Kernphysik

Lifetime and g factor measurements of short-lived states in vicinity of 208Pb

CodeSpokespersonNuclei of InterestE672Georgiev $\sim ^{208}$ Pb

Reaction: ²⁰⁸Pb + ¹⁰⁰Mo $\rightarrow \sim$ ²⁰⁸Pb at E = 6.25 AMeV, $I \sim 0.7$ pnA **Plunger:** Eight distances between 30 μ m and 4000 μ m

Spectrum: Damian Ralet

Plunger experiment at GANIL (April 2016): "Evolution of the shell structure in the region of n-rich Ti isotopes"

Motivation

 Phase transition: collective structures in ⁵⁸Fe → neutron subshell closure developing for ⁵⁶Cr → ⁵⁴Ti → ⁵²Ca

 π f_{7/2} orbital emptied: weakening of π f_{7/2} - ν f_{5/2} monopole interaction → increasing gap ν p_{3/2}, ν p_{1/2}

Aim: investigate shell structure in neutron rich ⁵⁴Ti, ⁵⁵V from transition strengths between low-lying states: ⁵⁴Ti: only B(E2;2₁⁺ \rightarrow 0₁⁺) known from intermediate Coulex, ⁵⁴Ti: Δ B(E2) = 17% ⁵⁵V: no lifetimes / no B(π L)

Neutron Number N

Universität zu Köln – Institut für Kernphysik

Theoretical approaches for n-rich Ti

n 2 $p_{3/2}$, 2 $p_{1/2}$, 1 $f_{7/2}$, 1 $g_{9/2}$, 2 $d_{5/2}$

Insufficient theoretical description of n-rich Ti

- \rightarrow ⁵⁴Ti: determine yrast B(E2), ⁵⁵V: transition strengths between low-lying states, $\Delta \sim 10\%$
 - \rightarrow conclusive picture of evolving structure,
 - \rightarrow contributions of different orbitals to 4₁⁺, 6₁⁺ (⁵⁴Ti)

Universität zu Köln – Institut für Kernphysik

Shell closure for N=32

Experiment on nuclei in the region of 54Ti

Universität zu Köln – Institut für Kernphysik

Target problems: caused by thermal effects?

- → not predicted by estimates of target temperature: original target 0.9 mg/cm² 54 Cr on 0.6 mg/cm² Mg fronting got wrinkles (~100 µm), same for 50 Ti, self-supp.
- → modified target to increase heat conductivity: ⁵⁰Ti, 1.2 mg/cm² on 0.4 mg/cm² ^{nat}Cu
- \rightarrow run experiment with this target, low ²³⁸U beam current: 3 enA = 0.1 pnA, beam diameter as large as possible

- \rightarrow distances measured: 70 mm, 150 mm, 180 mm, 240 mm, 300 mm, 1000 mm each for 4 5 shifts
- \rightarrow however, afterwards...

Modified target shows wrinkles again.

- → assumption: caused by change of crystalline structure in ²³⁸U beam.
- → detailed investigation will be done (solid state physics)
- → feedback system data show: change of structure after a short time in beam
- → analyze lifetime data: use well-known lifetimes of neighboring nuclei (^{51,52}Ti)

NUSPIN 2016

Universität zu Köln – Institut für Kernphysik

Spectra ⁵⁴Ti

Universität zu Köln – Institut für Kernphysik

Universität zu Köln – Institut für Kernphysik

Collaboration

B. Birkenbach, A. Blazhev, T. Braunroth, A. Dewald, C. Fransen,
 J. Jolie, J. Litzinger, C. Müller-Gatermann, P. Reiter, A. Vogt, K.O. Zell
 Institut f
ür Kernphysik, Universität zu Köln, Cologne, Germany

E. Clement, G. De France, J. Goupil, B. Jacquot, A. Lemasson, C. Michelagnoli, A. Navin, R. Perez, M. Rejmund, GANIL, Caen, France

> T. Kröll, C. Henrich, S. Ilieva Institut für Kernphysik, TU Darmstadt, Germany

D. Bazzacco, P.R. John, S. Lenzi, R. Menegazzo, D. Mengoni, F. Recchia Dip. di Fisica dell' Universta and INFN, Sezione di Padova, Padova, Italy

G. de Angelis, A. Goasduff, F. Gramegna, G. Jaworski, T. Marchi, V. Modamio, D.R. Napoli, D. Testov, M. Siciliano, J.J. Valiente-Dobon INFN, Laboratori Nazionali di Legnaro, Italy

> S. Bondili, D. Cullen University of Manchester, UK

Experimental details: The RDDS method

- \rightarrow analyse coincidence data. often not possible for exotic nuclei
- → Exotic nuclei: often only singles estimate sidefeeding effects

AGATA Collaboration Meeting GANIL

The plunger technique

 $\gamma\gamma$ coincidence measurement

- Plot ratio I₁/I₁ + I2 vs
 distance
- Every distance d_i gives $\tau_{d_i} = f_{d_i}(\frac{l_1}{l_1+l_2})$
- More reliable*:
 Differential Decay
 Curve Method
- Differential: $\frac{d}{dt} = \frac{d}{dx}\frac{dx}{dt} = V\frac{d}{dx}$

* Depending on statistics and distances measured.

Eventually: consider deorientation for long flight times: \rightarrow flight distance of some 100 μm for v/c=0.1

Universität zu Köln – Institut für Kernphysik

AGATA Week Madrid 2014