

Reaction and structure studies with the MUGAST+AGATA setup @ VAMOS

- Concept
- LOIs, Physics Cases
- Detectors, Design and test bench
- Electronics
- Targets

Freddy Flavigny (on behalf of the collaboration)

NUSPIN + Agata Workshop 2016

flaviqny@ipno.in2p3.fr

Extend the range of direct reactions studies of exotic nuclei with Si arrays:

- Intermediate and heavier masses
- Higher excitation energies Low sp strength
- Sometimes at mid-shell
- Detect/identify several channels altogether

Resolution, Efficiency, Sensitivity

Ultimate setup : 4π -detection of particle and gammas with pulse-shape analysis

Projects ongoing :

- TRACE
- GASPARD

(Many) Challenges

- Compactness
- Number of channels
- Digitization

Opportunities:

- AGATA at VAMOS-GANIL for some years
- SPIRAL1+ upgrade with new beams available
- Some Si detectors of future arrays progressively available

→ Intermediate configuration: MUGAST (MUST2-GASPARD-TRACE)

Particle detection:

•

- 4 GASPARD trapezoid DSSSD (backward/AGATA side)
 - 1 Annular (S1-like)
- (backward close to 180°)
- 2 TRACE square detectors (@90°)
- 4 MUST2 Telescope (forward)
- Existing electronics (MUFEE+MUVI)

γ-detection (AGATA):

- Maximize eff: ≈ 8% @1 MeV @ 18cm *(for 11 triples)*
- Benefit from very good energy resolution (≈ 5 keV)

MUGAST+AGATA @ VAMOS

→ LoI for AGATA+MUGAST+VAMOS for the PAC @ GANIL

Reaction studies using the MUGAST+AGATA setup at VAMOS

Letter of Intent to the AGATA collaboration

D.Beaumel, IPN Orsay D.Mengoni, University and INFN Padova

1. Introduction

The GASPARD and TRACE high granularity Silicon arrays have been natively designed for optimal integration in new generation gamma detectors such as AGATA with the aim of performing high-resolution reaction studies. Indeed, the coupling to AGATA allows a very large gain in excitation energy resolution, in comparison with the case where the excitation energy is deduced from the recoil charged-particle measurement. The GASPARD and TRACE collaboration are now converging to build such new-generation Si ensemble in common, with a timeline of 2019-20 for completion of the final 4π array, ready for the emerging ISOL facilities, like SPES and SPIRAL1. A view of such ultimate GASPARD-TRACE setup sitting inside AGATA is shown in Fig.1.

The PAC found the proposition of combining MUGAST+AGATA with VAMOS compelling, and it was clear that much progress had already been made in realising this ambition, with significant development of the instrumentation. The aim to deliver a campaign around transfer reactions (including stripping) was well received as it was believed that this should be a core component of the future scientific programme of GANIL, building on the rich heritage of the programme that the present collaboration has led. The PAC is therefore supportive of this development and it would seem that the best course of action is to present this proposition to the GANIL Scientific Council as directed by the GANIL Director.

MUGAST+AGATA @ VAMOS

\rightarrow LoI for AGATA+MUGAST+VAMOS for the PAC @ GANIL

Nuclear astrophysics:

- ¹⁵O(⁶Li,d)¹⁹Ne
- ²⁵Al(³He,d)
- ³⁰P(³He,d) or (d,p)
- ⁶⁰Fe(d,p)
- ⁷⁹Se(d,p)⁸⁰Se

- (C.Diget, Univ. of York, N. de Séréville, IPNO)
- (N.de Séréville, F. Hammache, IPNO)
- (N.de Séréville, F.Hammache, IPNO)
 - (A.Matta, W.Catford, University of Surrey)
 - (G. de Angelis, INFN-LNL, D.Mengoni, University of Padova, C.Domingo Pardo, CSIC Valencia)

Shell evolution

- ⁵⁶Ni(d,p)(d,t) (F.Flavigny, IPNO, O.Sorlin, GANIL)
- ²⁸Mg(d,p) (A.Matta, W.Carford, University of Surrey)
- ⁷⁴Kr(d,p) (A.Matta, W.Carford, University of Surrey)
- ⁴⁸Cr(d,p)⁴⁹Cr (A.Gadea, CSIC Valencia)
- ³⁰Mg(d,d)(d,p) (B.Fernandez-Dominguez, University of Santiago, W.Catford, University of Surrey)
- ⁶⁷As,⁶³Ga(³He,d) (D.Mengoni, University of Padova)
- ^{44,46}Ar(t,p) (D.Mengoni, University of Padova)
- ⁶⁶Ni(t,p),⁴⁴Ar(t,p) (¹⁴C,¹²C)(¹⁸O,¹⁶O) (L.Fortunato, J.A.Lay, University of Padova)

Clusters, pairing, correlations & others

- ⁵⁶Ni(³He,p)(⁶Li,α)
- 45 K + 7 Li -> 46 Ca+ α
- $^{16}O + ^{A}Z$
- $^{14}O(p,p)$

- (M.Assie, IPNO)
- (S.Leoni, University of Milano, B.Fornal, Krakow)
 - (G.Verde, INFN Catania and IPNO)
- (I.Stefan, IPNO)

- 8 independent LoI + Umbrella LoI •
- Mostly stripping reactions • (backward)

Shell evolution in the N=29 nuclei

Trapezoid detectors and test bench

Ordered to Micron semiconductors :

- 2 trapez. prototypes nTD DSSSD ordered by IPN (delivered end of june 2015)
- 3 more trapezoid « series » ordered (1 Surrey, 1 Santiago University, 1 IPN)
- 2 square proto. nTD DSSSD + 1 thick sq. DSSSD (ordered by INFN end of 2014, under fabrication)

Test bench mounted @ Orsay :

- Digital test bench (GASPARD purposes)
- Analog test bench (256 channels) : Trapezoid + MUFEE + MUVI + GANIL acq.

Aim \rightarrow End of 2016 validation of prototypes

MUGAST Electronics : MUFFEE + MUVI

Design of the reaction chamber @IPN (E. Rindel)

Design

- Distance AGATA-target = 18 cm
- No electronics behind trapezoid detector
- Capability of handling more trapezoids
- Possibility of second layer.
- Fully removable backward array
- Option for cryogenic target

→ Financed: 42kE Univ. of Surrey (W. Catford)

Design + cabling \rightarrow 3D-printed model

Model used for:

- Definition of kaptons from boards to detectors:
 - Shape
 - Length
 - Rigidity
- Best positionning of cooling blocks
- Realize space/rigidity constraints

Cryogenic target

Important physics interest for :

- p addition : (3He,d)
- np transfer: (3He,p) (4He,d)

⁴He,³He target of IPNO-DA:

- Specifications:
 - diameter = 16 mm
 - thickness = 3 mm
 - T ≈ 8 K
 - P = 1 bar
 - Window: Havar (3.8 μm)
- Used in 2007:
 - ²²Ne(α,⁶He)²⁰Ne
 - ²²Ne(α,⁶Be)²⁰O
- Exists and ³He possible
- Reparation, redesign, testing: not yet funded

Full coupling (preliminary)

12

Simulations

Particle detection

- 4 MUST2 Telescopes at forward angles
 - Distance : 18 cm [10-50]°
- 2TRACE squares around 90°:
 - Distance : 13.5 cm [60,90]°
- 4 Trapezoids and one Annular:
 - Distance : 10.5 cm Ann: 13.4cm
 - Angles: [105-155]° + [161-174]°

Beam:	⁵⁶ Ni(12+)
Intensity:	7*10 ⁴ pps
Energy:	10 MeV/nucleon
A/Q:	4.667
Q(d,p):	+8 MeV

Simulations: ⁵⁶Ni(d,p) and ²⁸Mg(d,p)

da/dΩ (mb/sr) 10⁵ ²⁸Mg(d,p)²⁹Mg 1.1 MeV 4.43, (7/2-,9/2+) 10 MeV/nucleon – 1mg.cm⁻² Sn = 3.655 10^5 pps. – 1 week exp 3.20, (7/2-,3/2 -) shell \mathbf{J}^{π} E (MeV) l σ (mb) N_R N_D N_C 2.500, (3/2+) S=0.25 10⁴ 1d3/2 $3/2^{+}$ 35k 5k 350 80 20 0 2 7 2.266, (1/2-) 2s1/2 $1/2^{+}$ 0.054 2 24k 5k 350 5 2p3/2 3/2-1.1 1 17 80k 25k 1750 1.431, 7/2-1f7/27/2-1.4 3 18 83k 25k 1750 1.095. 3/2-2p1/2 $1/2^{-}$ 2.3 39k 12k 840 3 8 $3/2^{+}$ 1d3/22.5 3 10 44k 14k 980 10^{3} 0.054, (1/2+) S=0.43 10 20 30 0 1f7/2 7/2-0.0, 3/2+ S=0.42 4.4 4 19 87k 25k 1750

5

Conclusion, Status and Timeline

ITEM	STATUS	who
>> DETECTORS		
Trapezoids proto (x2)	Commissionning	IPNO, P2IO
Trapezoids pre-serie (x3)	Ordered	Surrey/IPNO +Santiago
Squared proto (x2) + Thick proto	Ordered	INFN-Padova
Annular (x1) th = 500um	Available	IPNO, Surrey
>> ELECTRONICS		
MUST2 FEE boards x10 +1?	Available	
(MUST2 FEE new boards x5 boards+components+ASIC	Order 2016	IPNO, Saclay, LPC
MUST2 Digital boards (x4)	Available	
Kaptons prototypes	Ordered: test 09/16	IPNO
Final Kaptons (x48)	Designed	IPNO
Cables & feedthroughs	2016-2017	IPNO
>> MECHANICS		
Chamber VAMOS and supports	Final for end 2016	Surrey

- Reaction chamber design ongoing (fully funded)
- Test bench mounted
 @ IPN and operational
- Kaptons:
 - design close to final:
 - Prototypes ordered for test
- ASIC for MUST2: OK
 Encapsulation needed
- new MUFEE cards study: \rightarrow OK
- Cryogenic target possibility (not yet funded)

Backup

1) Beam Contamination

Primary beam	Target	⁵⁶ Ni (12+) pps	⁵⁶ Co(11+) pps
58Ni	12C	7.3E+04	1.6E+06
58Ni	Nb	4.0E+04	1.7E+06

Charge state	% 0.5 mg/ cm ²	% 1 mg/ cm ²	% 2 mg/ cm ²
28+	17	16	15
27+	42	41	39
26+	31	32	34
25+	8	9	11

2) Charges states in VAMOS after secondary target (preliminary)

⁵⁷Ni level scheme

Simulations

CASE OF ⁴⁸CR WITH SPIRAL1

- ▶ (p,³He) reaction not possible with 11MeV/A at maximum (Q=-13,4 MeV)
- (³He,p) reactions favoured at low energy

Backward detection of protons with GASPARD

• Statistics :

- Beam: 7.3*10^4
- Target: 2 mg.cm⁻²
- Effic. (p) rec.: 85%
- Effic. (p) geo: 40 % * 70%

• Effic. (γ): 8 % at 1 MeV 4% at 2-3 MeV

In 9 days (27 UTs)

		E (MeV)	C ² S	Xsec (mb)	Cnts(p)	Cnts(p+γ)
Main sp-states	Γ	0	0.9	19	35000	
	0.769	0.9	5	9700	800	
	1.113	0.9	8	14000	1100	
		3.701	0.6	27	19000	1500
Low sp-strength f_{v} (2.5 MeV)		3 - 6	0.1	20	2000	80
If γ (1.0 MeV)			0.1	20	2000	160

E (MeV)	nlj	Xsec @10 A.MeV (mb)	Xsec @30 A.MeV (mb)
0	2p3/2	19	4.3
0.769	1f5/2	5.3	2.7
1.113	2p1/2	7.8	1.3
2.443	1f5/2	5.9	2.5
2.577	1f7/2	12	6.0
3.007	2p3/2	20	2.8
3.009	1g9/2	27	26

At 10 MeV/nucleon:

- Higher cross sections than 30 MeV/nucleon
- Better matching for L=1 orbitals but L=3,4 ok
- Well-defined shape for angular distributions
- L=1 and 3 shape very different (1st max)
- Higher E* states favored due to high Qvalue (+8 MeV)

Baranger sum rule:

$$e_{p}^{\text{cent}} \equiv \sum_{\mu \in \mathcal{H}_{A+1}} S_{\mu}^{+pp} E_{\mu}^{+} + \sum_{\nu \in \mathcal{H}_{A-1}} S_{\nu}^{-pp} E_{\nu}^{-}$$

Full expansion:

T. Duguet, V. Soma et al , arxiV 1411.1237 (2014) T. Duguet, V. Soma et al , PRC87 011303(R) T.Duguet. G.Hagen, PRC85 034330

Experimentally:

Major assumption in treatment : separation of reaction mechanism and structure inputs

Cross section
to populate a final state
$$\mu$$
 $\sigma_{\mu} = \sum_{p \in H < H_1} \left| \left\langle \varphi_{\mu}^{A-1} \middle| a_p^{-} \middle| \varphi_0^A \right\rangle \right|^2 \times \sigma_p$ reaction
Structure