Perspectives for γ -ray spectroscopy at GSI/FAIR

J. Gerl GSI

June 28, 2016 NUSPIN 2016 Workshop Venice, Italy

Facility for Antiproton and Ion Research – The Facility

Cooled beams

Rapidly cycling superconducting magnets

Primary Beams

10¹²/s; 1.5-2 GeV/u; ²³⁸U²⁸⁺
Factor 100-1000 over present in intensity
2(4)x10¹³/s 30 GeV protons
10¹⁰/s ²³⁸U⁷³⁺ up to 25 (- 35) GeV/u

Secondary Beams

 Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
 Antiprotons 3 - 30 GeV

Storage and Cooler Rings

- Radioactive beams
- •e A collider
- 10¹¹ stored and cooled 0.8 14.5 GeV antiprotons

Uniqueness and Competitiveness

- High energies for unique separation and unique experiments
- Competitive intensities throughout the periodic table

Facility	U beam int. per spill at production target
previously at GSI	12x10 ⁹
after the SIS18 upgrade at GSI	8x10 ⁹
commissioning phase SIS100	2x10 ¹⁰
final full intensity with SIS100	3x10 ¹¹

	Experimental opportunities for high-resolution spectroscopy at FAIR/NUSTAR					
Re	esearch field	Experimental method (beam-energy range)	Physics goals and observables	Beam int. (particle/s)		
Nucl reac astro	ear structure, tions and ophysics	Intermediate energy Coulomb excitation, In-beam spectroscopy of fragmentation products (E/A ~ 100 MeV)	Medium spin structure, Evolution of shell structure and nuclear shapes, transition probabilities, moments,	10 ¹ 10 ⁵		
		Multiple Coulomb excitation, direct and deep-inelastic, fusion evaporation reactions (E/A ~ 5 MeV; Coulomb barrier)	high spin structure, single particle structure, dynamical properties, transition probabilities, moments,	10 ⁴ 10 ⁷		
		Decay spectroscopy (E/A = 0 MeV)	half-lives, spins, nuclear moments, GT strength, isomer decay, beta- decay, beta-delayed neutron emission, exotic decays such as two proton, two neutron.	10 ⁻⁵ 10 ³		

1 Extracted from HISPEC/DESPEC Technical Proposal , 12.2005

Planned instrumentation

HISPEC

- -LYCCA heavy ion calorimeter with ToF capability in operation
- -AGATA gamma spectrometer in operation
- -Hyde light particle array prototype
- -NEDA Neutron detector array prototype
- -EDAQ dedicated electronics and DAQ based on several branches

DESPEC

- -AIDA active implantation device prototype
- -MONSTER neutron ToF array under construction
- -BELEN neutron detecion array in operation
- -DTAS Decay Total Absorption Spectrometer in operation
- -DEGAS Ge Array gamma spectrometer in development
- -FATIMA Fast timing array in operation
- -EDAQ dedicated electronics and DAQ based on several branches

NUSTAR experimental areas @ FAIR

LEB Building B006b

HISPEC/DESPEC Setups in the LEB

Gamma-Spectroscopy: What is the problem?

AIDA – DEGAS Set-up

AIDA Trigger-less Si-DSSSD array

Active area: 24x8 cm², 8x8 cm² Pixels: 3x128x128 = 49152 Layers: variable E-range: 20 MeV + 20 GeV Processing time: 20µs

DEGAS

Shielded Triple Cluster Ge array No. Ge Det.: 3x28 = 84 Efficiency: 23% E-range: 50 keV ... 5 MeV

> LEB beam requirements similar to FRS/S4

DEGAS Detector Realization

TDR approved in 7.2015

Ge Array with 28 Triples

Funding: Phase I 100% secured Phase II ≈80% secured

DEGAS Shield Design

- Active scintillator shields
- Background reduction
- Compton suppression
- SiPM read-out
- time, energy

DEGAS Phases

Reactions at relativistic beam energies

Challenges of In-beam ejectile *γ*-spectroscopy

Challenges

- Incoming particle selection and identification: here FRS @ GSI
- v/c \approx 0.5: large Doppler-shift of γ -radiation
- High accuracy in α and $\theta \rightarrow$ granular detectors
- Outgoing particle identification: LYCCA
- Detection of γ-radiation: AGATA

While waiting for FAIR - HISPEC: PreSPEC @ GSI

PRESPEC-AGATA = HISPEC-0

LYCCA

AGATA

Hector

Experimental Campaign 2012, 2014

AGATA Tracking array 3x2+6x3 crystals R = 12 - 40 cm $\varepsilon_{Ph} = 5 - 9\%$ $\Delta E = 0.4 - 1.2\%$

⁸⁰Kr induced reactions

NUSTAR - Phases

Phase 0

R&D and experiments to be carried out with present facilities (GSI and others) and FAIR/NUSTAR equipment (basic set-ups)

Phase 1

- Core detectors and subsystems completed
- First measurements with FAIR/Super-FRS beams
- Carry out experiments with highest visibility as part of the core program and within the FAIR MSV ("day-1")
- Phase 2
 - FAIR evolving towards full power
 - Completion of experiments within MSV
 - > Essentially the full program of MSV can be performed
- Phase 3
 - Moderate projects, which have been initiated on the way (outside MSV) can be included (e.g. experiments related to return line for rings or R³B spectrometer)

Phase 4

Major new investments and upgrades for all experiments

NUSTAR time line

Beam time at GSI

Current planning:

- 2016 Break for SIS-18 upgrade and UNILAC renovation, Operation of UNILAC (experiments) and SIS (tests) for 12 respectively 7 weeks
- 2017: Break for SIS-18 upgrade and shielding enforcement
- 2018: Q1-2: SIS-18 commissioning Q3-4: 3-4 months, experiment programme
- 2019: 5-6 months, FAIR preparations and experiment programme
- 2020: 5-6 months, FAIR preparations and experiment programme

DESPEC DEGAS Phase 1

Conclusions

- FAIR will offer many opportunities for in-beam and decay spectroscopy
- Rare isotope beams of all elements will be available at relativistic energies, slowed-down to Coulomb barrier energies and stopped
- Decay studies are planned with the DEGAS Ge-detector array comprising 28 triple detectors with active scintillator shields
- In-beam studies are planned with a dedicated array of AGATA detectors
- The NUSTAR Phase-0 experimental programme will start in 2018 employing the FAIR injectors.
- DESPEC decay spectroscopy experiments with DEGAS at FRS/S4 will be among the first NUSTAR experiments
- A Physics workshop to discuss ideas for experiments with DEGAS will be held at the NUSTAR Week in York (September 27)

...thank you

SIS18 Uranium Intensity Expectations 2018

		SIS operation today	SIS operation after upgrade (2017-2020)
Reference Ion		U ⁷³⁺	U ⁷³⁺
Maximum Energy		1 GeV/u	1 GeV/u
UNILAC Current		1 emA	3 emA
Maximum Intensity per Cycle		4·10 ⁹	1·10 ¹⁰
Maximum Intensity per Second		2·10 ⁹ /s	2·10 ¹⁰ /s
Repetition Rate	Fast Extraction	0.5 Hz	2 Hz
Maximum Intensity per Second		6·10 ⁸ /s	4·10 ⁹ /s
Repetition Rate for 5 s Spill	Slow Extraction	0.14 Hz	0.18 Hz
Slow extr. efficiency		50 %	75%

Decay Total Absorption Spectrometer (DTAS)

DTAS ready for use

