Silicon detectors for the EXL project

TECHNISCHE UNIVERSITÄT DARMSTADT

Mirko von Schmid for the EXL-E105 collaboration

29.06.2016 | NuSpIn 2016 Workshop, Venice | Mirko von Schmid | 1

The EXL project

- "EXotic nuclei studied in Light-ion induced reactions at storage rings"
- Direct reactions of exotic beams in inverse kinematics on an internal gas-jet target
 - Measurements at very low momentum transfer
 - Kinematically complete measurements
 - High luminosities due to beam recirculation in storage ring
- First EXL experiment with radioactive beam at the ESR, GSI:
 - ²⁰Ne, ⁵⁸Ni and ⁵⁶Ni beams
 - ⁴He and H₂ gas-jet targets
 - ⁵⁶Ni(p,p) luminosity: 2.10²⁶ particles s cm²

Elastic proton scattering in inverse kinematics

Kinematics of ⁵⁶Ni(p,p) at 400 MeV/u:

- Low momentum transfer results in low recoil energies towards $\theta_{lab} = 90^{\circ}$.
- Thin, windowless targets and detectors with low energy threshold mandatory.
- Storage ring demands UHV compatibility.

29.06.2016 | NuSpIn 2016 Workshop, Venice | Mirko von Schmid | 3

Vacuum concept

- ► First successful tests using (2 × 2) cm² DSSD prototype
- Artificial leak on HV side (needle valve)
- Vacuum separation by 6 orders of magnitude difference achieved

Vacuum concept

- $\blacktriangleright\,$ First successful tests using (2 \times 2) cm^2 DSSD prototype
- Artificial leak on HV side (needle valve)
- Vacuum separation by 6 orders of magnitude difference achieved
- DSSD survives bake-out without loosing performance

Experimental setup at the ESR

aperture to improve angular resolution

DSSDs for EXL by PTI, St. Petersburg – "Compensated" window design

energy [keV]

500 µm 65 μm 1000 um SiO₂ 10 um Narrow interstrip gaps n--n+ ¹⁴⁸Gd source Thin dead layers: 10³ p-side, strip #64 p⁺-implant on p-side: 500 Å counts Al metallization: 600 Å 10^{2} thin SiO₂ layer: 500 Å 10^{1} Compensation of different energy 10 losses for low-energy particles 2000 3000 3500 2500

• Energy resolution \approx 25 keV (FWHM)

DSSDs for EXL – UHV compatible PCB and readout

DSSD on AIN PCB

- Similar thermal expansion coefficients of Si and AIN
- "Clean" UHV side with sealed feedthroughs; no soldering, no connectors etc.
- Readout of all 192 strips from the back side
- Reversible contacting via spring pins in custom made connector made of PEEK
 - Heat resistant till 160°C at least

Elastic proton scattering ⁵⁶Ni(p,p) at 390 MeV/u

energy [MeV]

29.06.2016 | NuSpIn 2016 Workshop, Venice | Mirko von Schmid | 8

Elastic proton scattering ⁵⁶Ni(p,p) at 390 MeV/u with 1 mm aperture

45 40 2nd Si(Li) 35 30 energy [MeV] 1st Si(Li) 25 20 15 elastic DSSD scattering first 2 10 (2.7 MeV 5 beam 0 16 32 48 64 80 96 8 target DSSD p-side strip

29.06.2016 | NuSpIn 2016 Workshop, Venice | Mirko von Schmid | 8

Beam-related deterioration of the DSSD

- Beam intensity of stable ⁵⁸Ni beam \approx 25 times higher.
- Observed deterioration of detector performance over time:
 - Leakage current increasing
 - Lowered punch-through energy \rightarrow decreased depletion depth

Beam-related deterioration of the DSSD – Evolution over time

Beam-related deterioration of the DSSD – Evolution over time

^{29.06.2016 |} NuSpIn 2016 Workshop, Venice | Mirko von Schmid | 11

Origin of the deterioration?

- \blacktriangleright No high fluxes of high energy particles expected \rightarrow no damage of the bulk
- Surface effect \rightarrow elastically scattered electrons (δ -rays) from the target?
- Kinematics for ⁵⁸Ni(e,e) at 400 MeV/u
 - Energies below trigger thresholds
- Rate estimates for luminosity of 10²⁸ cm⁻² s⁻¹
 - Total rate on DSSD: 21 MHz (5 MHz with slit aperture)

29.06.2016 | NuSpIn 2016 Workshop, Venice | Mirko von Schmid | 12

Origin of the deterioration?

- Delta electrons create electron-hole pairs in SiO₂ layer
- ► Hole mobility in SiO₂ is orders of magnitude lower than electron mobility
- Build-up of positive charge in SiO₂
 - Counters negative bias voltage
 - Decreases depletion depth

Conclusion

- First successful nuclear reaction experiment with stored exotic beams ever!
- Addressed and solved many challenging difficulties
 - Operation of DSSDs in UHV
 - Principle of vacuum separation proven to work
- Observed beam-related deterioration of the DSSD
 - Deterioration of depletion depth
 - Radiation not visible in DSSD spectrum
 - Dependent on (integral) luminosity
 - Possible explanation: Low energy electrons charging the DSSD's oxide layer
 - Needs further investigation

Outlook

- ► Upgraded detector setup covering a substantially larger solid angle is planed.
 - Detectors placed directly in the UHV.

 Future experiments envisaged at GSI and at FAIR using CRYRING, ESR and HESR.

Thank you for your attention

TECHNISCHE UNIVERSITÄT DARMSTADT

S. Bagchi¹, S. Bönig², M. Csatlós³, I. Dillmann⁴, C. Dimopoulou⁴, P. Egelhof⁴, V. Eremin⁵, T. Furuno⁶, H. Geissel⁴, R. Gernhäuser⁷, M. N. Harakeh¹, A.-L. Hartig², S. Ilieva², N. Kalantar-Nayestanaki¹, O. Kiselev⁴, H. Kollmus⁴, C. Kozhuharov⁴, A. Krasznahorkay³, T. Kröll², M. Kuilman¹, S. Litvinov⁴, Yu. A. Litvinov⁴, M. Mahjour-Shafiei^{1,8}, M. Muttere⁴, D. Nagae⁹, M.A. Najafi¹, C. Nociforo⁴, F. Nolden⁴, U. Popp⁴, C. Rigollet¹, S. Roy¹, C. Scheidenberger⁴, M. von Schmid², M. Steck⁴, B. Streicher^{2,4}, L. Stuhl³, M. Takech¹⁴, M. Thürauf², T. Uesaka¹⁰, H. Weick⁴, J. S. Winfield⁴, D. Winters⁴, P. J. Woods¹¹, T. Yamaguchi¹², K. Yue^{2,4,13}, J.C. Zamora², J. Zenihiro¹⁰

 1
 KVI-CART, Groningen

 2
 Technische Universität Darmstadt

 3
 ATOMKI, Debrecen

 4
 GSI, Darmstadt

 5
 Ioffe Physico-Technical Institute, St. Petersburg

 6
 Kyoto University

 7
 Technische Universität München

⁸ University of Tehran
 ⁹ University of Tsukuba
 ¹⁰ RIKEN Nishina Center
 ¹¹ The University of Edinburgh
 ¹² Saitama University
 ¹³ Institute of Modern Physics, Lanzhou

This work was supported by BMBF (06DA9040I, 05P12RDFN8, 05P15RDFN1), the European Commission within the Seventh Framework Programme through IA-ENSAR (contract no. RII3-CT-2010-262010), HIC for FAIR, GSI-RUG/KVI collaboration agreement and TU Darmstadt-GSI cooperation contract.

29.06.2016 | NuSpIn 2016 Workshop, Venice | Mirko von Schmid | 16