Coulomb excitation of superdeformed states in ⁴²Ca

Kasia Hadyńska-Klęk

P.J. Napiorkowski, M. Zielińska, J. Srebrny A. Maj, F. Azaiez, J.J. Valiente-Dobon, M. Kicińska-Habior, F. Nowacki, H. Naidja, T. Rodriguez

(on behalf of AGATA & EAGLE collaborations)

NUSPIN Workshop 27.06 – 1.07.2016

Motivation

⁴⁰Ca

B(E2; $4^+ \rightarrow 2^+$) = 170 Wu (DSAM, GAMMASHPERE@ANL) $\rightarrow \beta_2 = 0.6 - \underline{superdeformation}$

- E. Ideguchi et al., PRL 87, 222501 (2001)
- C.J. Chiara et al., PRC 67, 041303R (2003)

Superdeformed bands in A~40 mass region:

- ³⁶Ar: C.E.Svensson et al., PRL 85 (2000) 2693
- ³⁸Ar: D.Rudolph et al., PRC 65 (2002) 034305
- ⁴⁰Ar: E.Ideguchi et al., PLB 686 (2010) 18
- ⁴⁴Ti: D.C.O'Leary et al., PRC 61 (2000) 064314

(in all cases β_2 between 0.4-0.6, axis ratio 3:2 - 2:1)

⁴⁶Ti GDR decay feedings states in ⁴²Ca

Coulomb excitation of ⁴²Ca

- Beam: ⁴²Ca, 170 MeV
- Targets:
 - ²⁰⁸Pb, 1 mg/cm²
 - ¹⁹⁷Au, 1 mg/cm²
- AGATA: 3 triple clusters, 143.8 mm from the target
- DANTE: 3 MCP detectors, 100-144°

Results – spectrum of ⁴²Ca

Results – GOSIA calculations

		$\langle I_i \ E2 \ I_f \rangle$ (e·fm ²)	$B(E2)\downarrow$ ($e^{2}\cdot fm^{4}$)	
$ _i^+ \rightarrow $	$_{f}^{+}$	Present	Present	Others
$2^+_1 \rightarrow 0^+_1$		$20.5 \begin{array}{c} +0.6 \\ -0.6 \end{array}$	84 ⁺⁵ ₋₅	80 (3)
$\mathbf{2_2^+} \rightarrow \mathbf{0_1^+}$		$-6.4 \begin{array}{c} +0.3 \\ -0.3 \end{array}$	$8.2 \ ^{+0.8}_{-0.8}$	19 (5)
$\mathbf{4_1^+} \rightarrow \mathbf{2_1^+}$		24.3 $^{+1.2}_{-1.2}$	$66.0 \begin{array}{c} +6.5 \\ -6.5 \end{array}$	427 (128)
$0^+_2 \rightarrow 2^+_1$		$22.2 \stackrel{+1.1}{_{-1.1}}$	493 ⁺⁴⁹ -49	576 (36)
$\mathbf{2^+_2} \rightarrow \mathbf{2^+_1}$		$-23.7 \stackrel{+2.3}{_{-2.7}}$	$112 \ ^{+22}_{-22}$	146 (1)
$4^+_2 \rightarrow 2^+_1$		42 +3	$196 \ ^{+28}_{-37}$	256 (93)
$6^+_1 ightarrow 4$	4_{1}^{+}	9.3 +0.2 -0.2	$6.7 \ ^{+0.3}_{-0.3}$	6 (2)
$\mathbf{2_2^+} \rightarrow \mathbf{0_2^+}$		26 + 5 - 4	$135 \ ^{+52}_{-42}$	<520
$4^+_2 \rightarrow 2$	2^+_2	46 ⁺⁵ ₋₆	$235 \ ^{+51}_{-61}$	484 (189)
	($\langle 2_i^+ \ E2 \ 2_i^+ \rangle$ (e·fm ²)	Q _{sp} (e⋅fm ²)	
		Present	Present	Others
2_{1}^{+}		$-16 \begin{array}{c} +9 \\ -3 \end{array}$	-12 +7	-19 (8)
2^{+}_{2}		$-55 \ ^{+15}_{-15}$	-42 +12 -12	

Discussion: Quadrupole Sum Rules method

$$\frac{1}{\sqrt{5}} \langle Q^2 \rangle = \frac{1}{\sqrt{2I_i + 1}} \sum_t \langle i \| E2 \| t \rangle \langle t \| E2 \| f \rangle \left\{ \begin{array}{ll} 2 & 2 & 0\\ I_i & I_f & I_t \end{array} \right\}$$
$$\langle Q^3 \cos(3\delta) \rangle = \mp \frac{\sqrt{35}}{\sqrt{2}} \frac{1}{\sqrt{2I_i + 1}} \sum_{tu} \langle s \| E2 \| u \rangle \langle u \| E2 \| t \rangle \langle t \| E2 \| s \rangle \left\{ \begin{array}{ll} 2 & 2 & 0\\ I_f & I_t \end{array} \right\}$$

Discussion: Quadrupole Shape Invariants

Discussion: Quadrupole Shape Invariants

Discussion: Quadrupole Shape Invariants

Discussion: Shape parameters

Non-zero Q^2 for the ground state could be caused by **fluctuations** around the spherical shape so the maximum triaxiality could be the effect of averaging over <u>all possible quadrupole shapes</u>. If so, the dispersion of Q^2 , $\sigma(Q^2)$, should be comparable to Q^2 value

$$\sigma(Q^2) = \sqrt{\langle Q^4 \rangle - \langle Q^2 \rangle^2}$$

Insufficient experimental data

Theoretical predictions and the full set of ME from the SM and BMF calculations

Discussion: Shape parameters

We use the theoretical predictions and the full set of ME from the calculations:

- Large Scale Shell Model (F. Nowacki, H. Naidja Strasbourg)
- Beyond Mean Field (T. Rodriguez Madrid)

Discussion: Shape parameters

We use the theoretical predictions and the full set of ME from the calculations:

- Large Scale Shell Model (F. Nowacki, H. Naidja Strasbourg)
- Beyond Mean Field (T. Rodriguez Madrid)

state	$\langle Q^2 \rangle_{exp}$	$\langle Q^2 \rangle_{SM}$	$\sigma(Q^2)_{SM}$	$\langle Q^2 \rangle_{BMF}$	$\sigma(Q^2)_{BMF}$
0_{1}^{+}	500 (20)	240	470	100	250
2_{1}^{+}	900(100)	250	490	100	310
0_{2}^{+}	1300(230)	1200	500	1900	520
2^{+}_{2}	1400(250)	1130	500	1900	300
state $\langle \cos(3\delta) \rangle_{exp}$		$\langle \cos(3\delta) \rangle_{SM}$		$\langle \cos(3\delta) \rangle_{BMF}$	
0_{1}^{+}	0.06(10)	0.34		0.34	
0_{2}^{+}	0.79(13)	0.67		0.49	

0₁ - SPHERICAL with large fluctuations around minimum 0₂ - SLIGHTLY TRIAXIAL/PROLATE shape

K. Hadynska-Klek et al., accepted in PRL

Summary

- the properties of low-lying states in ⁴²Ca were studied using low-energy Coulomb excitation – 0⁺, 2⁺ and 4⁺ states observed in both bands
- the quadrupole deformation parameters of the 0⁺and 2⁺ states in GSB and SDB in ⁴²Ca were determined from the measured reduced matrix elements
- the results were compared with SM and BMF calculations
- the non-zero deformation of the ground state has been attributed to the fluctuations around the spherical shape
- a large static deformation of β =0.43(2) and β =0.45(2), for 0₂⁺and 2₂⁺ was observed, proving the superdeformed character of the side band
- the cos(3δ) parameter measured for 0_2 brings the first experimental evidence for nonaxial character of SD bands in the A~ 40 mass region