

Recent Results and Perspectives of Gamma-ray Spectroscopy at the RIBF

P. Doornenbal, for the SUNFLOWER and EURICA Collaborations ピーター ドルネンバル

Outline

Physics Case

Experimental Setup

EURICA Results

DALI2 Results

Summary and Outlook

Physics case

Setup

- DALI2 for in-beam spectroscopy
- EURICA for decay and isomer spectroscopy

Selected results

Conclusions and perspectives

Physics Case

Regions of Interest

Experimental Setup

PD, Perspectives of γ -ray Spectroscopy at the RIBF

RIBF Overview

Superconducting Ring Cyclotron (SRC)

Intensities	of 345 N	leV/u beams from	m the SRC	Russia	
Nucloue		Beam Intensity /	pnA		
TNUCIEUS	Goal	Achieved Max	Average		• $K = 2500 \text{ MeV}$
⁴⁸ Ca	1000	689	500		8300 tons
⁷⁰ Zn	1000	123	100	STELL-	5.36 m extraction radius
⁷⁸ Kr	1000	486	250		6 sector magnets
¹²⁴ Xe	100	>100	70–80		• four main RF cavities
²³⁸ U	100	49	40		

PD, Perspectives of γ -ray Spectroscopy at the RIBF

Superconducting Ring Cyclotron (SRC)

PD, Perspectives of $\gamma\text{-ray}$ Spectroscopy at the RIBF

ZeroDegree Spectrometer

EURICA (EUroball-RIken Cluster Array)

WAS3ABi

Wide-range Active Silicon-Strip Stopper Array for Beta and ion detection

- Up to 8 layers of DSSSDs
- 40×60 strips, 1 mm width
- Developed and owned by RIKEN/IBS/TU München
- 20 keV threshold, 20 keV energy resolution
- 100-200 pps maximum implantation rate
- Provides β -decay trigger for EURICA spectrometer

Performed Experiments EURICA

Date	Spokesperson	Primary	Used Days	
April 2012	S. Nishimura, P. Doornenbal	¹⁸ O	4	
June 2012	P. Boutachkov	¹²⁴ Xe	6	
November 2012	S. Nishimura	²³⁸ U	7.5	
November 2012	H. Watanabe, G. Lorusso	²³⁸ U	6	
November 2012	G. Simpson, A. Jungclaus	²³⁸ U	5	
December 2012	H. Watanabe, G. Lorusso	²³⁸ U	3.7	
December 2012	M. Niikura	²³⁸ U	5.5	
April 2013	A. Odahara, R. Lozeva, C. Moon	²³⁸ U	4.5	
May 2013	T. Sumikama	²³⁸ U	9.5	
May 2013	E. Ideguchi	²³⁸ U	5.5	
May 2013	G. Benzoni	²³⁸ U	5.7	
June 2013	M. Lewitowicz	¹²⁴ Xe	12	
June 2013	G. Lorusso	¹²⁴ Xe	3	
November 2014	H. Watanabe, P.A. Söderström	²³⁸ U	5.5	
June 2015	B. Blank	⁷⁸ Kr	5	
June 2015	Y. Fujita, W. Gelletly, B. Rubio	⁷⁸ Kr	5	
June 2015	G. de Angelis, A. Algora, F. Recchia, B. Rubio	⁷⁸ Kr	5	
June 2016	A. Estrade	²³⁸ U	5	
June 2016	F. Recchia	²³⁸ U	3.5	
	19 Experiments	TOTAL	106.9	

PD, Perspectives of $\gamma\text{-ray}$ Spectroscopy at the RIBF

DALI2 (2010-to Present)

Physics Case

- Experimental Setup
- RIBF Overview
- ZeroDegree
- Setup

DALI2 Configuration

- Performed
 Experiments
- EURICA Results
- DALI2 Results
- Summary and Outlook

- Forward-wall configuration
- 186 Nal(TI) detectors
- ϑ coverage 11° to 165°
- 7 % intrinsic resolution at 1 MeV
- $\Delta E/E \approx$ 10(11) % at 100(250) MeV/*u*
- 20% efficiency @ 1 MeV w/o add-back
- Simplified target holder and beam pipe
- **3 PPAC for beam tracking,** σ_{ϑ} = 5 mrad
- 1mm Pb (+1mm Sn) shielding

S. Takeuchi et al., NIMA 763, 596 (2014).

Performed Experiments ZDS(+DALI2)

Date	Spokesperson	Primary	Used Days	Nuclei	Method
December 2008	H. Scheit	⁴⁸ Ca	0.5	³² Ne	knock-out
December 2008	T. Nakamura	⁴⁸ Ca	2.5	^{20,22} C, ³¹ Ne	knockout, Coul. diss
December 2009	H. Scheit	⁴⁸ Ca	-	³² Mg	Coulex
December 2010	S. Takeuchi	⁴⁸ Ca	3.4	^{38,40,42} Si	knock-out
December 2010	H. Scheit	⁴⁸ Ca	3	³⁰ Ne, ^{36,38} Mg	knockout, Coulex
December 2010	D. Bazin	⁴⁸ Ca	4	³³ Mg	knockout
December 2010	P. Fallon	⁴⁸ Ca	1	⁴⁰ Mg	knockout
December 2010	T. Nakamura	⁴⁸ Ca	4.5	n-rich Mg, Si	knockout, Coul. diss.
November 2011	K. Yoneda	²³⁸ Ս	10	⁷⁸ Ni	knockout
December 2011	N. Aoi	²³⁸ Ս	3	^{122,124,126} Pd, ¹³² Cd, ¹³⁶ Mg	knockout
June 2012	P. Doornenbal, A. Obertelli	¹²⁴ Xe	5	^{102,104,112} Sn	knockout, Coulex
July 2012	D. Steppenbeck, S. Takeuchi	⁷⁰ Zn	3	⁵⁴ Ca	knockout
May 2013	G. de Angelis	²³⁸ U	parasitic	^{73–75} Ni	Coulex
April 2014	H. Wang, N. Aoi	²³⁸ U	3.5	¹³⁰ Cd	Coulex
May 2014	P. Doornenbal, A. Obertelli	²³⁸ U	10	⁶⁶ Cr, ^{70,72} Fe, ⁷⁸ Ni	knockout
November 2014	T. Aumann	²³⁸ U	4.5	^{128,132} Sn	pygmy, inel.
November 2014	O. Wieland	²³⁸ U	2	⁷⁰ Ni	pygmy, inel.
November 2014	H. Baba	⁴⁸ Са	7.5	^{20,22,24} O	pygmy, inel.
April 2015 April 2015 May 2015 May 2015	E. Sahin A. Jungclaus P. Doornenbal, A. Obertelli W. Korten 22 Experiments	²³⁸ U ²³⁸ U ²³⁸ U ⁷⁸ Kr TOTAL	5 3 9 6 90.4	^{73,77} Cu ¹³⁶ Te many ^{70,72} Kr	Coulex Coulex knockout Coulex, knockout

PD, Perspectives of $\gamma\text{-ray}$ Spectroscopy at the RIBF

Selected EURICA Results

6^+ seniority isomers of 136,138 Sn

- To investigate in detail the neutron-neutron part of nucleon-nucleon effective interactions in semi-magic Sn nuclei which have simple structures.
- A 6⁺ isomer is known in ¹³⁴Sn and the same isomer should be present in ^{136,138}Sn.

G.S. Simpson et al., Phys. Rev. Lett. 113, 262502 (2014)

6^+ seniority isomers of 136,138 Sn

- Nearly constant energies of the 2^+ , 4^+ , 6^+ levels
- Seniority 2 excitations, mostly $\nu f_{7/2}^2$
- $6^+ \rightarrow 4^+$ B(E2) in 136 Sn not in agreement
- \rightarrow reduce the $\nu f_{7/2}^2$ matrix elements
- Almost equal contribution of seniority 2 and 4

G.S. Simpson et al., Phys. Rev. Lett. 113, 262502 (2014)

Measured Half-Lives in ¹³²Sn **Region**

- 108 Half-Lives (re)-measured
- Direct impact on r-process calculations
- Hot r-process abundance drastically improved

G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015)

100

120

140

160

Mass number A

180

200

220

240

A Fast Timing Array together with EURICA

- 18 LaBr₃ detectors provided by UK
- $\beta\gamma$ -coincidence with fast plastic scintillator
- First time this technique is used in-flight with RI Beams
- Life-time capability down to $\sim 100 \text{ ps}$

Z. Patel et al., RIKEN Accel. Prog. Rep. 47, 13 (2014)

Life-time of 2_1^+ states in 104,106 Zr

- First 2^+ and 4^+ states populated by β decay of 104,106 Y
- Clear exponential tail for the 2^+ state and a prompt 4^+ state
- Extraction of life-time shows deformation maximum for ¹⁰⁴Zr

F. Browne *et al.*, Phys. Lett. B 750, 448 (2015)

Selected DALI2 Results with SEASTAR

PD, Perspectives of γ -ray Spectroscopy at the RIBF

Shell Evolution And Search for Two-plus energies At the RIBF (SEASTAR)

PD, Perspectives of γ -ray Spectroscopy at the RIBF

NUSPIN 2016, Venice, June 27 - July 1, 2016 - 22

70

 110 Zr

Shell Evolution And Search for Two-plus energies At the RIBF (SEASTAR)

MINOS: Coupling of a Liquid Hydrogen Target with a TPC

Maglc Numbers Off Stability

http://minos.cea.fr

- Up to 1 g/cm² liquid hydrogen target
 Position sensitive TPC
 - Driftime \rightarrow Z-beam axis
 - Vertex position reconstruction
 - Achieved \approx 5 mm (FWHM)

A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).

Nuclei of Interest for First SEASTAR Campaign, May 2014

Secondary beams at 240 MeV/u, 100-mm target, $\delta\beta = 20\%$

SEASTAR Collaboration, May 2014

- Physics Case
- **Experimental Setup**
- **EURICA Results**
- DALI2 Results
- $\bigstar \operatorname{New} E(2_1^+)$
- ♦ MINOS
- First Campaign

Photo

- ♦ ⁶⁶Cr and ^{70,72}Fe
- Second Campaign
- Neutron-Rich Se Isotopes
- **♦**¹¹⁰Zr
- Deformation
- Summary and Outlook

Maximum of Collectivity Beyond N = 40

Extension of N = 40 "Island of Inversion" towards N = 50

C. Santamaria, C. Louchart et al., PRL 115, 192501 (2015).

Nuclei of Interest for Second SEASTAR Campaign, May 2015

Neutron-rich Se Isotopes

DALI2 analysis by S. Chen, RIKEN; EURICA ^{92,94}Se isomers by C. Lizarazo, TU Darmstadt

Neutron-rich Se Isotopes

Gogny D1S effective interaction
Full GCM for all quadrupole degrees of freedom
Prediction for shape coexistence
AND prolate to oblate shape transition at N=58-60
T.R. Rodriguez, Madrid, Spain
Good agreement between expt and theory for 2⁺₁, 2⁺₂, 4⁺₁, 4⁺₂

DALI2 analysis by S. Chen, RIKEN; EURICA ^{92,94}Se isomers by C. Lizarazo, TU Darmstadt

First Spectroscopy of ¹¹⁰Zr

- DALI2 thresholds < 100 keV</p>
- Subtraction of Bremsstrahlung components from elastic events (with absolute normalisation)
- Benchmark on ¹⁰⁸Zr and in agreement with ¹¹²Mo β -decay from EURICA
- Lifetime effects taken into account

DALI2 analysis by N. Paul, CEA Saclay

Extreme deformation at N = 70 **in** ¹¹²**Mo** and ¹¹⁰**Zr**

Summary and Outlook

PD, Perspectives of γ -ray Spectroscopy at the RIBF

Observed Neutron-Rich $E(2_1^+)$ at RIBF Since 2009

41 new $E(2_1^+)$ observed since 2009 at RIBF

Physics Case of 3rd SEASTAR Campaign

Production Cross-Sections

Physics Case

Experimental Setup

EURICA Results

DALI2 Results

Summary and Outlook

 $\mathbf{E}(2^+_1)$ since 2009

3rd SEASTAR Campaign

Cross-Sections

Summary

Collaboration

H. Suzuki et al., NIMB 317, 756 (2013).

Summary

Physics Case

Experimental Setup

EURICA Results

DALI2 Results

Summary and Outlook

 $E(2_1^+)$ since 2009

3rd SEASTAR Campaign

Cross-Sections

Summary

Collaboration

EURICA physics program very successful

- Experimental program completed
- 107 days of beam time used since 2012
- \blacktriangleright \approx 25 publications so far
- Cluster detectors go back to GSI this year
- SUNFLOWER experiments with DALI2
 - 87 days of beam time used since 2010
 - 25 days of backlog
 - \approx 25 publications so far
- SEASTAR Project at the RIBF
 - Combination of LH₂ target up to 15 cm with DALI2
 - First spectroscopy of:
 - May 2014: ⁶⁶Cr, ^{70,72}Fe, ⁷⁸Ni
 - May 2015: ⁸⁴Zn, ⁸⁸Ge, ^{88,90,92,94}Se, ^{98,100}Kr, ¹¹⁰Zr, ¹¹²Mo
 - Spring 2017: ⁵²Ar, ⁵⁶Ca, ⁶²Ti

In-beam spectroscopy of ¹⁰⁰Sn now within reach

EURICA Collaboration

A. Algora¹, N. Aoi², H. Baba³, T. Bäck⁴, Ch. Bauer³⁷, G. Benzoni⁵, N. Blasi⁵, A. Blazhev, M. Bostan⁶, P. Boutachkov¹⁹, A. Bracco^{5,7}, S. Brambilla⁷, F. Browne⁴⁴, A. Bruce⁴⁴, L. Cáceres⁸, B. Cakirli³⁹, F. Camera^{5,7}, W.N. Catford¹⁸, I. Celikovic^{8,9}, J. Chiba¹⁰, E. Clément⁸, F. Crespi^{5,7}, P.V. Cuong⁴⁶, G. de Angelis^{11,12}, G. de France⁸, N. de Séréville¹³, F. Didierjean¹⁴, Zs. Dombradi⁴⁰, C. Domingo-Pardo¹, M. Doncel¹⁵, P. Doornenbal³, G. Duchêne¹⁴, T. Engert¹⁹, N. Erduran¹⁶, Th. Feastermann²⁰, E. Farnea^{11,12}, S. Franchoo¹³, Y. Fujita², N. Fukuda³, Zs. Fulop⁴⁰, A. Gadea¹, U. Garg⁵⁰, A. Garnsworthy¹⁷, W. Gelletly¹⁸, J. Gerl¹⁹, R. Gernhäuser²⁰, S. Go²¹, A. Gottardo^{11,12}, E. Gregor¹⁹, S. Grévy²², B. Guo⁴¹, G. Hackman¹⁷, F. Hammache¹³, T. Hayakawa²³, Ch. Hinke²⁰, Y. Hirayama²⁴, H. Hua²⁵, L.T.Q. Huong⁴⁶, T. Hüyük¹, F. Ibrahim¹³, Y. Ichikawa³, E. Ideguchi²¹, N. Imai²⁴, N. Inabe³, H. Ishiyama²⁴, T. Isobe³, S. Jeong²⁴, H. Jung⁵², A. Jungclaus²⁶, D. Kameda³, L.H. Khiem⁴⁶, T. Koike³⁸, I. Kojouharov¹⁹, K. Kolos¹³, T. Komatsubara²⁷, A. Korichi²⁸, W. Korten⁵¹, R. Krücken¹⁷, T. Kubo³, N. Kurz¹⁹, A. Kusoglu⁶, S. Lalkovski⁴⁷, F. Le Blanc¹³, J. Lee³, S. Leoni^{5,7}, M. Lewitowicz⁸, Z.H. Li^{3,25}, X. Li²⁵, Zh. Li⁴¹, M. Liu⁴², W. Liu⁴¹, Zh. Liu⁴³, G. Lorusso³, R. Lozeva¹⁴, S. Lunardi^{11,12}, P. Mason¹⁸, I. Matea¹³, D. Mengoni^{11,12}, C. Michelagnoli^{11,12}, B. Million⁵, H. Miyatake²⁴, V. Modamio^{11,12}, C.B. Moon²⁹, A. Morales⁷, K. Morimoto³, K. Moschner⁵³, T. Motobayashi³, T. Nagatomo^{3,30} T. Nakamura³¹, T. Nakao³, M. Nakhoshtin¹⁸, D. Napoli¹¹, M. Niikura¹³, H. Nishibata³², D. Nishimura³, M. Nishimura³, S. Nishimura³, F. Nowacki¹⁴, J. Nyberg³³, A. Odahara³², R. Orlandi²⁶, S. Orrigo¹, J. Philip¹¹ N. Pietralla³⁷, S. Pietri¹⁹, A. Pipidis¹¹, Zs. Podolyak¹⁸, B. Quintana¹⁵, M. Ramdhane³⁴, F. Recchia¹², P. Regan¹⁸, S. Rice¹⁸, O. Roberts⁴⁴, B. Rubio¹, E. Sahin^{11,12}, M. Sako^{3,35}, H. Sakurai^{3,36}, H. Schaffner¹⁹, H. Scheit³⁷, T. Shimoda³², P. Shury^{3,27}, K. Sieja¹⁴, G. Simpson³⁴, P.A. Söderström³, D. Sohler⁴⁰, T. Sonoda³, O. Sorlin⁸, I. Stefan¹³, K. Steiger²⁰, D. Steppenbeck³, J. Su⁴¹, T. Sumikama¹⁰, B. Sunchan^{48,49}, H. Suzuki³, J. Takatsu³², H. Takeda³, S. Takeuchi³, J. Taprogge²⁶, T. Teranishi⁵⁴, D. Testov¹³, G. Thiamova³⁴, J.C. Thomas⁸, C. Townsley¹⁸, T.D. Trong⁴⁶, H. Ueno³, C. Ur^{11,12}, Zs. Vajta⁴⁰ J. Valiente Dobon^{11,12}, D. Verney¹³, Y. Wakabashi²³, T. Wakui³⁸, P. Walker¹⁸, Y. Wang⁴¹, H. Watanabe³, Y. Watanabe²⁴, V. Werner⁴⁵, O. Wieland⁵, H.J. Wollersheim¹⁹, Z. Xu³⁶, A. Yagi³², M. Yalcinkaya⁶, H. Yamaguchi²¹, Y. Ye²⁵, A. Yoshimi³, K. Yoshinaga^{3,10}, Y. Zhang⁴², Y. Zheng⁴², and X. Zhou⁴²

 ¹ University of Valencia, Spain
 ² RCNP, Japan
 ³ RIKEN, Wako, Japan
 ⁴ Royal Institute of Technology, Stockholm, Sweden
 ⁵ INFN, Milano, Italy
 ⁶ University of Istanbul, Turkey
 ⁷ University of Milano, Italy
 ⁸ GANIL, Caen, France
 ⁹ VINCA, Belgrade, Yugoslavia
 ¹⁰ Tokyo University of Science, Japan
 ¹¹ LNL, Legnaro, Italy
 ¹² University of Padova, Italy
 ¹³ IPN Orsay, France
 ¹⁴ IPHC, Strasbourg, France ¹⁵LRI - University of Salamanca, Spain
 ¹⁶University of Akdeniz, Antalya, Turkey
 ¹⁷TRIUMF, Vancouver, Canada
 ¹⁸University of Surrey, Guildford, UK
 ¹⁹GSI, Darmstadt, Germany
 ²⁰TU München, Germany
 ²¹CNS, University of Tokyo, Japan
 ²²CENBG Bordeaux, France
 ²³JAEA, Tokai, Japan
 ²⁴KEK, Tokai, Japan
 ²⁵Peking University, China
 ²⁶CSIC, Madrid, Spain
 ²⁷University of Tsukuba, Japan ²⁸CSNSM Orsay, France
 ²⁹Hoseo University, Chun-Nam, Korea ³⁰ICU, Tokyo, Japan
 ³¹Tokyo Institute of Technology, Japan ³²Osaka University, Japan
 ³³Uppsala University, Sweden ³⁴LPSC Grenoble, France ³⁵Kyoto University, Japan
 ³⁶University of Tokyo, Hongo, Japan ³⁷TU Darmstadt, Germany ³⁸Tohoku University, Japan
 ³⁹MPI Heidelberg, Germany ⁴⁰ATOMKI, Debrecen, Hungary ⁴¹CIAE, Peking, China ⁴² IMP Lanzhou, China
⁴³ University of Edingburgh, UK
⁴⁴ University of Brighton, UK
⁴⁵ Yale University, USA
⁴⁶ Vietnam Academy for Science and Technology, Hanoi, Vietnam
⁴⁷ University of Sofia, Bulgaria
⁴⁸ Beihang University, Beijing, China
⁴⁹ Justus-Liebig-University, Giessen, Germany
⁵⁰ University of Notre Dame, USA
⁵¹ CEA Saclay, France
⁵² Chung-Ang University, Seoul, Korea
⁵³ University of Cologne, Germany
⁵⁴ Kyushu University, Japan

SEASTAR Collaboration

SEASTAR:

N. Alamanos, G. de Angelis, N. Aoi, H. Baba, C. Barbieri, C. Bertulani, C. Bernards, A. Blazhev, S. Boissinot, F. Browne, A. Bruce, B. Cakirli, B. Cederwall, N. Cooper, A. Corsi, M. L. Cortés, F. Delaunay, B. Ding, Z. Dombradi, P. Doornenbal, T. Duguet, S. Franchoo, J. Gibelin, A. Gillibert, S. Go, M. Gorska, A. Gottardo, S. Grevy, J.D. Holt, E. Ideguchi, T. Isobe, A. Jungclaus, N. Kobayashi, T. Kobayashi, Y. Kondo, W. Korten, T. Kroell, Y. Kubota, I. Kuti, V. Lapoux, S. LeBlond, J. Lee, S. Lenzi, H. Liu, Z. Liu, G. Lorusso, C. Louchart, R. Lozeva, F.M. Marques, I. Matea, K. Matsui, Y. Matsuda, M. Matsushita, J. Menendez, D. Mengoni, S. Michimasa, T. Miyazaki, S. Momiyama, P. Morfouace, T. Motobayashi, T. Nakamura, D. Napoli, F. Naqvi, M. Niikura, M. Nishimura, S. Nishimura, A. Obertelli, L. Olivier, N. Orr, S. Ota, H. Otsu, T. Otsuka, N. Pietralla, Zs. Podolyak, E.C. Pollacco, G. Potel, G. Randisi, F. Recchia, E. Sahin, H. Sakurai, C. Santamaria, M. Sasano, H. Sato, A. Schwenk, C. Shand, Y. Shiga, Y. Shimizu, S. Shimoura, J. Simonis, P.A. Soederstroem, D. Sohler, V. Soma, I. Stefan, D. Steppenbeck, T. Sumikama, D. Suzuki, H. Suzuki, M. Tanaka, R. Taniuchi, K.N. Tuan, T. Uesaka, Y. Utsuno, J. Valiente Dobon, Zs. Vajta, D. Verney, H. Wang, V. Werner, K. Wimmer, Zh. Xu, R. Yokoyama, and K. Yoneda

Thank You!

Backup Slides

PD, Perspectives of $\gamma\text{-ray}$ Spectroscopy at the RIBF