Collectivity of the 4_1^+ states in heavy Zn isotopes and the first HIE-ISOLDE experiment

Magda Zielińska¹, Andres Illana Sison², Elisa Rapisarda³, Piet Van Duppen²

¹IRFU/SPhN, CEA Saclay, France; ² KU Leuven, Belgium; ³ PSI Villigen, Switzerland

and the IS557 – MINIBALL collaboration

- Motivation
- Lifetime measurements in heavy Zn isotopes
- Coulomb excitation measurements
 First HIE-ISOLDE experiment
- What have we learnt so far?

high excitation energy of the 2^+ state and low B(E2) in ⁶⁸Ni

 polarisation of the Z=28 proton core in ⁷⁰Ni

O. Perru et al., PRL 96 (2006)

high excitation energy of the 2^+ state and low B(E2) in ⁶⁸Ni

high excitation energy of the 2^+ state and low B(E2) in ⁶⁸Ni

- polarisation of the Z=28 proton core in ⁷⁰Ni
 O. Perru et al., PRL 96 (2006)
- core-coupled states (Fe-like and Ni-like) in Co isotopes
 D.Pauwels et al., PRC 79 (2009)
 A.Dijon et al, PRC 83 (2011)

high excitation energy of the 2^+ state and low B(E2) in ⁶⁸Ni

- polarisation of the Z=28 proton core in ⁷⁰Ni
 O. Perru et al., PRL 96 (2006)
- core-coupled states (Fe-like and Ni-like) in Co isotopes
 D.Pauwels et al., PRC 79 (2009)
 A.Dijon et al, PRC 83 (2011)
- onset of deformation in Fe isotopes
 J.Ljungvall et al., PRC 81 (2010)
 W.Rother et al., PRL 106 (2011)

high excitation energy of the 2^+ state and low B(E2) in ⁶⁸Ni

- polarisation of the Z=28 proton core in ⁷⁰Ni
 O. Perru et al., PRL 96 (2006)
- core-coupled states (Fe-like and Ni-like) in Co isotopes
 D.Pauwels et al., PRC 79 (2009)
 A.Dijon et al, PRC 83 (2011)
- onset of deformation in Fe isotopes
 J.Ljungvall et al., PRC 81 (2010)
 W.Rother et al., PRL 106 (2011)
- single particle, collective and core-coupled states in Cu isotopes I.Stefanescu et al., PRL 100 (2008)

high excitation energy of the 2^+ state and low B(E2) in ⁶⁸Ni

- polarisation of the Z=28 proton core in ⁷⁰Ni
 O. Perru et al., PRL 96 (2006)
- core-coupled states (Fe-like and Ni-like) in Co isotopes
 D.Pauwels et al., PRC 79 (2009)
 A.Dijon et al, PRC 83 (2011)
- onset of deformation in Fe isotopes
 J.Ljungvall et al., PRC 81 (2010)
 W.Rother et al., PRL 106 (2011)
- single particle, collective and core-coupled states in Cu isotopes I.Stefanescu et al., PRL 100 (2008)

Experimental methods to measure transition probabilities around ⁶⁸Ni

- yrast states
- problem of unknown feeding

 $\langle 2^+ \| \mathsf{E} 2 \| 2^+ \rangle \sim \mathsf{Q}_0$

Coulomb excitation

Combination of both methods should in principle give information on quadrupole moments, but it depends on precision and accuracy of the results

collective states

Transition probabilities in Zn isotopes: status five years ago

- B(E2)'s for stable Zn isotopes: Coulex, RDDS, DSAM: some important discrepancies (⁶⁶Zn)
- heavy Zn isotopes: Coulex, high-energy Coulex for 2⁺

- B(E2; $4^+ \rightarrow 2^+$) better test for theories than B(E2; $2^+ \rightarrow 0^+$)
- collectivity overestimated by beyond-mean-field calculations

Lifetime measurements in ^{70–74}Zn

C. Louchart, PRC 87 (2013) 054302

4 AGATA clusters

Deep inelastic reaction : 76 Ge (7.6 MeV/u) + 238 U PRISMA spectrometer at grazing angle (55°)

Cologne plunger

Target: 1.4 mg/cm² Degrader: Nb – 4.2 mg/cm² 5 plunger distances: 100, 200, 500, 1000, 1900 μ m (20 hours each)

Lifetime measurements in ^{70–74}Zn

- RDDS measurement with AGATA (Legnaro)
- new lifetimes for the 2⁺ states in agreement with previous B(E2; 2⁺ \rightarrow 0⁺) values
- good agreement with model calculations for the 2⁺

 discrepancy of the new lifetimes for 4⁺ states with low-energy Coulex results (especially for ⁷⁴Zn)

Lifetime measurements in ^{70,72}Zn

I. Celikovic, Acta Phys. Pol. B44 (2013)

- plunger measurement at GANIL: EXOGAM+VAMOS
- ²³⁸U beam (6.8 MeV/u) on ⁷⁰Zn
- confirmation of the RDDS results from Legnaro

- DSAM measurement, excited states in ⁷⁰Zn populated by non-safe Coulex on ¹²C
- 4⁺ \rightarrow 2⁺ (901 keV) and 2⁺ \rightarrow 0⁺ (885 keV) close in energy
- Coulomb excitation seems a more appropriate method to measure B(E2)'s in ⁷⁰Zn (no double peaks/tails)

Coulomb excitation of ⁷⁰**Zn**

M. Zielińska et al, HIL Warsaw

48 PIN diodes $(120^{\circ} - 155^{\circ})$

EAGLE: 15 ACS Ge detectors

³²S beam (68 MeV),
⁷⁰Zn target (0.7 mg/cm²)
5 days of data-taking

Preliminary – not full statistics

Coulomb excitation of exotic Zn nuclei at ISOLDE

gamma-ray detection array: MINIBALL 8 triple clusters, 8% efficiency particle detection setup: annular DSSD detector at forward angles detection of scattered Zn and recoiling target nuclei

- deexcitation γ rays mesured in coincidence with particles (Zn and target recoils)
- laser ionisation to suppress strong Ga contamination

Coulomb excitation of ⁷²Zn

PhD S. Hellgartner, TU Munich (2015)

- low-energy Coulex at ISOLDE
- C-REX setup
 - broad range of CM angles
- large statistics
 - differential cross sections
 - high-precision measurement
 - consistency check

Coulomb excitation of ^{74,76}**Zn: the first HIE-ISOLDE experiment**

⁷⁴Zn on ¹⁹⁴Pt: analysis by A. Illana, KU Leuven

- higher sensitivity to quadrupole moments
- max 6 hours of 4MeV/A beam per day, only on weekdays
- bad beam time structure (150 μ s bursts) high particle multiplicity

Coulomb excitation of ^{74,76}**Zn at HIE-ISOLDE**

⁷⁴Zn on ²⁰⁸Pb: analysis by A. Illana, KU Leuven

Analysis under way, we expect to obtain:

- B(E2; $4^+ \rightarrow 2^+$) in ^{74,76}Zn
- quadrupole moments of 2_1^+ in 74,76 Zn
- B(E2; $2_2^+ \rightarrow 2_1^+$) in ⁷⁴Zn (?)

What have we learnt so far?

- systematic disagreement between RDDS and Coulex results for 4⁺ states
- DSAM result (states populated in non-safe Coulex) seems consistent with Coulex
- ...but the RDDS result from GANIL, also with states populated in non safe Coulex, is not!
- better control of possible sources of systematic errors needed
 - feeding in lifetime measurements
 - second-order effects in Coulex
- too early to make comparisons with theory

Magda Zielińska, CEA Saclay

Description of the region south of ⁶⁸Ni

- Interaction between neutron $g_{9/2}$ and proton fp shell causes lowering of the $f_{5/2}$ and raising of the $f_{7/2}$
- collectivity increases with filling of the $\mathsf{g}_{9/2}$
- transition probabilitities important to test validity of model descriptions

Collectivity of 4⁺ states

• Small B(E2;4⁺ \rightarrow 2⁺)/B(E2;2⁺ \rightarrow 0⁺) ratio for all Zn isotopes \rightarrow indication of a non-collective character of the 4⁺ states

Identifications of recoils

C. Louchart, PRC 87 (2013) 054302

Lifetime measurements in ^{70–74}Zn

C. Louchart, PRC 87 (2013) 054302

