QRPA with the Gogny force: description of vibrational states up to octupole

Sophie Péru and

I. Deloncle (CSNSM)
M. Dupuis (CEA, DAM) S. Goriely (ULB)
S. Hilaire (CEA, DAM)
F. Lechaftois (CEA, DAM)
M. Martini (CEA, ESNT)

Reminder

Static mean field (HFB)
for Ground State Properties :

- Masses
- Deformation
- (Single particle levels)

Amedee database :
http://www-phynu.cea.fr/HFB-Gogny_eng.htm
S. Hilaire \& M. Girod, EPJ A33 (2007) 237

Beyond static mean field approximation (5DCH or QRPA)
for description of Excited State Properties

- Low-energy collective levels
- Giant Resonances

Beyond mean field ... with 5DCH

(2 vibr. +3 rot.) $=5$ Dimension Collective Hamiltonian

Shell closure studies with 5DCH

S. Péru, M. Girod, JF. Berger, Eur. Phys. J. A 9,35-47, (2000)

$$
\begin{aligned}
& \mathrm{E}\left(2^{+}{ }_{1}\right)_{\text {Theo. }}=1.46 \mathrm{MeV} \\
& \mathrm{E}\left(2^{+}{ }_{1}\right)_{\text {Exp. }}=1.297(0.018) \mathrm{MeV}, \\
& \mathrm{~B}\left(\mathrm{E} 2,0^{+}{ }_{\mathrm{gs}} \rightarrow 2^{+}{ }_{1}\right)=420 \mathrm{e}^{2} \mathrm{fm}^{4} \\
& \mathrm{~B}\left(\mathrm{E} 2,0^{+}{ }_{\mathrm{gs}} \rightarrow 2^{+}{ }_{1}\right)=314(88) \mathrm{e}^{2} \mathrm{fm}^{4}
\end{aligned}
$$

Further analysis : moments of inertia

Sulfur isotopes

D. SOHLER et al. PHYSICAL REVIEW C 66, 054302 (2002)

S. Péru \& M. Martini, EPJA (2014) 50 : 88

Some exploitation of 5DCH with Gogny forces

Systematics studies

S. Goriely, S. Hilaire, M. Girod, S. Péru , PRL 102, 242501 (2009)

Beyond static mean field ... with 5DCH or QRPA

5 Dimension Collective Hamiltonian

 describes ground state and excited states within configuration mixing : quadrupole vibration and rotational degrees of freedom.

S.Péru and M. Martini, EPJA (2014) 50: 88.
(Q)RPA approaches describe all multipolarties and all parities, collective states and individual ones, low energy and high energy states with the same accuracy.
But small amplitude approximation
i.e. « harmonic » nuclei

! QRPA approaches don't describe rotational motion !

HFB+QRPA versus HFB+5DCH with the same interaction cea

S. Péru and M. Martini, EPJA (2014) 50: 88.

HFB+QRPA versus HFB+5DCH with the same interaction cea

Ni isotopes ($\mathrm{Z}=28$)
Two shell $(N=28,50)$ and one sub-shell $(N=40)$ closures

${ }^{78} \mathrm{Ni}$ is predicted doubly magic

For deformed nuclei the first 2^{+}state is rotational
S. Péru and M. Martini, EPJA (2014) 50: 88.

Beyond mean field... with QRPA

RPA approaches describe
all multipolarties and all parities, collective states and individual ones, low energy and high energy states
with the same accuracy. Within the small amplitude approximation, i.e. « harmonic » nuclei

Axially symetric deformed QRPA with Gogny force
S. Péru, H. Goutte, Phys. Rev. C 77, 044313, (2008)
M. Martini, S. Péru and M. Dupuis, Phys. Rev. C 83, 034309 (2011)
S. Péru et al, Phys. Rev. C 83, 014314 (2011)

Fig. 3. (Color online.) Systematics of 2^{+}and 3^{-}excitation energies in tin isotopes from experiment and HFB + QRPA calculations using the Gogny D1M interaction.

Octupole states in heavy nuclei

$\mathrm{N}=150 \mathrm{Cm}, \mathrm{Cf}, \mathrm{Fm}$ and No isotopes
 First phonon $K^{\pi}=2^{-}$

Dipole response for Neon isotopes

Increasing neutron number

-Low energy dipole resonances and shift to low energies - Increasing of fragmentation
${ }^{26} \mathrm{Ne}: B(E 1)=0.49 \pm 0.16 \mathrm{e}^{2} \mathrm{fm}^{2} \% \mathrm{STRK}=4.9 \pm 1.6 @ 9 \mathrm{MeV}$ J. Gibelin et al, PRL 101, 212503 (2008)

Dipole response for Neon isotopes and $\mathrm{N}=16$ isotones

First study with QRPA in axial symmetry

S. Péru and H. Goutte, Phys. Rev. C 77, 044313 (2008).

Multipolar responses for ${ }^{238} \mathrm{U}$

Comparison with experimental data

Systematic overestimation of the centroid energies :~ 2 MeV

Beyond the nuclear structure

($\mathrm{n}, x \mathrm{n}$) cross section on ${ }^{238} \mathrm{U}$ Problem of underestimation of n emission cross section at high energy QRPA provides enough collective contribution

M. Dupuis, S.Péru, E. Bauge and T. Kawano, 13th International Conference on Nuclear Reaction Mechanisms, Varenna 2012 CERN-Proceedings-2012-002, p 95

Photoneutron cross sections for Mo isotopes

FIG. 3. (Color online) Comparison between the present photoneutron emission cross sections and previously measured ones [17,18] for six Mo isotopes, ${ }^{94} \mathrm{Mo}$ (a), ${ }^{95} \mathrm{Mo}$ (b), ${ }^{96} \mathrm{Mo}$ (c), ${ }^{97} \mathrm{Mo}$ (d), ${ }^{98} \mathrm{Mo}$ (e), and ${ }^{100} \mathrm{Mo}$ (f). Also included are the predictions from Skyrme HFB + QRPA (based on the BSk7 interaction) [20] and axially deformed Gogny HFB + QRPA models (based on the D1M interaction) [23].

Photo-absorption cross sections for Mo isotopes

H. UTSUNOMIYA et al.

PHYSICAL REVIEW C 88, 015805 (2013)

Dipole electric and magnetic excitations for Zr isotopes

H. Utsunomiya et al, PRL 100, 162502 (2008)

Low Energy Enhancement in the y Strength of the Odd-Even Nucleus ${ }^{115} \mathrm{In}$

Nuclear Excitations

Charge exchange:
β decay

Neutrino scattering
(p, n) or $\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$

Gogny pnQRPA Strength Distributions

M. Martini, S. Péru and S. Goriely, Phys. Rev. C 89, 044306 (2014)

Good agreement with experimental data

Here, the reference energy corresponds to the lowest 2-qp excitation associated with the ground state of the odd-odd daughter nucleus in which the quantum numbers of the single quasi-proton and neutron states are obtained from the self-consistent HFB calculation of the odd-odd system.

An example of deformed nucleus: ${ }^{76} \mathrm{Ge}$

GT $J^{\pi}=1^{+}$distributions obtained by adding twice the $K^{\pi}=1^{+}$result to the $K^{\pi}=0^{+}$one

$$
\beta_{2}(\min . H F B)=0.15 \quad \gamma(\min . H F B)=0^{\circ}
$$

Thies et al., Phys. Rev. C 86, 014304 (2012)
pnQRPA-D1M

$$
\beta_{2}\left(0^{+}{ }_{1}: 5 \mathrm{DCH}\right)=0.26 \quad \gamma\left(0^{+}{ }_{1}: 5 \mathrm{DCH}\right)=26^{\circ}
$$

- The deformation tends to increase the fragmentation
- Displacements of the peaks
- Deformation influences the low energy strength hence β decay half-lives are expected to be affected

$$
\frac{\ln 2}{T_{1 / 2}}=\frac{\left(g_{A} / g_{V}\right)_{\mathrm{eff}}^{2}}{D} \sum_{E_{e x}=0}^{Q_{\beta}} f_{0}\left(Z, A, Q_{\beta}-E_{e x}\right) S_{G T}\left(E_{e x}\right)
$$

Our model

Other models

FRDM: Moller et al., ADNDT, 66,131 (1997)
GT2:Tachibana et al.
Prog. Theor. Phys., 84, 641 (1990)

Even and odd systems, deformed and spherical nuclei

To summarize

Beyond static mean field with the Gogny finite range force:

* 5DCH: good reproduction of collective low energy spectra and shell effects; QRPA : good description of pygmy and giant resonances in spherical or deformed nuclei
* QRPA and 5DCH complete each other.
* Self-consistent QRPA approach has been applied to the deformed nuclei up to heavy ones.
* All multipolarities can be reached including electric octupole and magnetic dipole.
* The GDR energy position with QRPA is systematically predicted $\sim 2 \mathrm{MeV}$ above the experimental values.
* Systematic studies have been undertaken for dipole response over the whole nuclear chart.

Extension of QRPA to charge exchange :

$>$ For magic spherical nuclei, IAR and GT results in good agreement with data.
$>$ The role of the intrinsic deformation has been shown for prolate ${ }^{76} \mathrm{Ge}$.
> Predictions of the β decay half-lives are compatible with experimental data.
\square Promising preliminary results for odd nuclei.

