

Nuclear Physics at GANIL-SPIRAL2

- Scientific program (AGATA)
- Evolution of GANIL-SPIRAL2

M. Lewitowicz

AGATA at GANIL

• AGATA at GANIL: 2015-2019

• sub campaigns co-organized: ACC, GANIL management, campaign manager

(S. Lenzi from the University of Padova)

Each GANIL PAC has a "PrePac" workshop

Ist PAC in 2014 : VAMOS (10 experiments approved)

PAC in 2015: VAMOS or NEDA (10 experiments approved)

Grd PAC in 2016 : NEDA (6 experiments approved)
 A statements approved)
 A statements approved
 A statements
 A

10th-12th February 2016 – AGATA /NEDA 8th-10th February 2016 : SPIRAL1 Workshop

> *Proposal for the AGATA-NEDA *Updated LoI for SPIRAL1 and GFM

1st campaign (2015-2017) : AGATA+VAMOS coupling

Multinucleon Transfer fusion-fission

Recoils identification by the VAMOS++ magnetic spectrometer

Full reconstruction over the whole acceptance Mass resolution ~ 1/220Z identification up to Z= 62

- H. Savajols et al, NIM B 204 (2003) 146-153
- S. Pullanhiotan, et al NIM A, 593(2008)
- *M. Rejmund et al, NIM* A 646 (2011) 184–191
- M. Vandebrouck et al, NIM A 812 (2016) 112–117

Installation & Commissioning & First exp.

⁴⁰Ar@4.25 MeV/A 2.8 pnA on ¹²²Sn

10 triple clusters in the experiments from March 2016 (first 7 exp. accomplished)

Z, A & q identification at few MeV/nucleon

Liftetime measurement in the ¹⁰⁰Sn region

z				105 Te	106Te	107 Te	108 Te	109Te	110 Te	111Te	112Te	113Te	114Te	115Te	116Te	117Te	118 Te
			103Sb	10e C) value	-8	8 Me∖	/ -:	3 Me'	√ ⊳	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb
ю	100Sn	101 Sn	102Sn	103Sn	104Sn	105Sn	1065n	1075n	1085n	1095n	1105n	1115n	112Sn	113Sn	114Sn	115Sn	116Sn
	99In	100In	101In	102In	103In	104In	1057	106In	107In	108In	109In	110In	111In	112In	113In	114In	115In
48	9 Cd	99Cd	100Cd	101Cd	102Cd	103Cd	104C	LOSCO	106Cd	107Cd	108Cq	109Cd	110Cq	111C9	115C9	113Cd	114Cd
	9' Ag	98Ag	99Ag	100Ag	101Ag	102Ag	103Ag	104Ag	105Ag	106Ag	107Ag	108Ag	109Ag	110Ag	IIIAg	112Ag	113Ag
46	9 Fd	97Pd	98Pd	99Fd	100Pd	101Pd	102Pd	103Pd	104Pd	105Pd	106Pd	107Pd	108Pd	109Pd	110Pd	111Pd	112Pd
	95Rh	96Rh	97Rh	98Rh	99Rh	100Rh	101Rh	102Rh	103Rh	104Rh	105Rh	106Rh	107Rh	108Rh	109Rh	110Rh	IIIRh
44	94Ru	95Ru	96Ru	97Ru	98Ru	99Ru	100Ru	101Ru	102Ru	103Ru	104Ru	105Ru	106Ru	107Ru	108Ru	109Ru	110Ru
	50		52		54		58		58		60		62		64		N

Multinucleon-transfer reactions in the neutron-deficient side to populate the Sn/Ru isotopes and measure the lifetimes of the 2⁺ and 4⁺ states

Physics cases of the 1st run AGATA at GANIL : Nuclear structure in the vicinity of doubly magic nuclei

Spectroscopy in the ⁶⁸⁻⁷⁸Ni region

J.Ljungvall et al, Phys.Rev. C 81, 061301 (2010 W.Rother et al, Phys.Rev.Lett. 106, 022502 (20 S. M. Lenzi, F. Nowacki, A. Poves, and K.

S. M. Lenzi, F. Nowacki, A. Poves, and K. Sieja, Phys. Rev. C 82, 054301 (2010)

Lifetime in the 4⁺ states in ^{62,64}Fe

+ Lifetime in Co and Mn

Physics cases for the 2nd run (2016-2017) : nuclear structure in the vicinity of doubly magic nuclei, N=Z nuclei, astrophysic and deformation A. Jungclaus et al. : Exploration of alpha-cluster structures in J. Nyberg et al. : Studies of excited states in ^{102,103}Sn to heavy nuclei: The unique case of ²¹²Po (²⁰⁸Pb + α) deduce two-body neutron interactions, single-particle energies and N=Z=50 core excitations M. Doncel et al. : Production test for spectroscopy and P. Regan et al. : Understanding Nuclear Collectivity lifetime measurements in the A=78 isobaric triplet using Approaching the π -v Valence Maximum: Transition multi-nucleon transfer reactions Quadrupole Moments in ^{166,168}Dy. S. Lenzi et al. : Effects of Isospin Symmetry Breaking in the A=63 mirror nuclei 2nd PAC 27th-28th Avril 2015 P. R. John et al ; Shape transition in W isotopes: ¹⁹⁰W and ¹⁹²W spectroscopy and fast timing 100**Sr** A. Navin et al ; $i_{13/2}$ single particle state in ¹³³Sn and high spin in ¹⁰⁸Zr W. Korten et al. :Shape coexistence and triaxiality in neutron-rich fission fragments in the mass A=100-120 I. Celikovic et al. : Evolution of collectivity around N=40: lifetime measurements in 73,75Ga C. Fransen et al. : Evolution of the shell structure P. Bednarczyk et al. : Investigation in the region of neutron-rich Ti isotopes of a high spin structure in ⁴⁴Ti ⁴⁸Ca C. Michelagnoli et al . : The lifetime of the 7.786 A. Lemasson et al : spectroscopy of ^{39,41,43}S MeV state in ²³Mg as a probe for classical novae models S. Leoni et al ; Lifetime in n-rich C and O isotopes: test of the three body forces

Physics cases for the 2nd run (2016-2017) : nuclear structure in the vicinity of doubly magic nuclei, N=Z nuclei, astrophysic and deformation A. Jungclauss et al. : Exploration of alpha-cluster structures in J. Nyberg et al. : Studies of excited states in ^{102,103}Sn to heavy nuclei: The unique case of ²¹²Po (²⁰⁸Pb + α) deduce two-body neutron interactions, single-particle energies and N=Z=50 core excitations M. Doncel et al. : Production test for spectroscopy and P. Regan et al. : Understanding Nuclear Collectivity lifetime measurements in the A=78 isobaric triplet using Approaching the π -v Valence Maximum: Transition multi-nucleon transfer reactions Quadrupole Moments in ^{166,168}Dy. S. Lenzi et al. : Effects of Isospin Symmetry Breaking in the A=63 mirror nuclei 2016's run : 4 experiments P. R. John et al ; Shape transition in W isotopes: ¹⁹⁰W and ¹⁹²W spectroscopy and fast timing ¹⁰⁰Sr A. Navin et al ; $i_{13/2}$ single particle state in ¹³³Sn and high spin in ¹⁰⁸Zr W. Korten et al. :Shape coexistence and triaxiality in neutron-rich fission fragments in the mass A=100-120 I. Celikovic et al. : Evolution of collectivity around N=40: lifetime measurements in 73,75Ga C. Fransen et al. : Evolution of the shell P. Bednarczyk et al. : Investigation structure in the region of neutron-rich Ti of a high spin structure in ⁴⁴Ti isotopes A. Lemasson et al : spectroscopy of ^{39,41,43}S C. Michelagnoli et al . : The lifetime of the 7.786 MeV state in ²³Mg as a probe for classical novae models S. Leoni et al ; Lifetime in n-rich C and O isotopes: test of the three body forces

¹⁹Ne +p ²⁰Na^{*} ¹⁹Ne^{*} + p'

¹⁸F mass f

0.1

0.05

About 22 times less ¹⁸F

mass 1.15 M_o

2000

3000

4000

5000

Time (s)

Conditions : nova type ONe

1000

¹⁹Ne SPIRAL 1 RIB 10 MeV/n

Magnetic dipole

CD-Pad Collimato

lagnetic guadrupole

 $\sigma = 33-44 \text{ keV}$

O-Q target 1 µm

Clues for new a resonance of astrophysical interest $E_r = 6.08(9) \text{ MeV}$ Γ_{tot} = 230(5) keV

New reaction rate ${}^{18}F(p,\alpha){}^{15}O$ is much higher **INTEGRAL** has less chance to detect gamma rays from the beginning of the explosion Previous estimate: 2 novae /y

New estimate (this work) = 0.1 novae /v

21/23

GANIL-SPIRAL2

- Scientific program
- Evolution of GANIL-SPIRAL2

M. Lewitowicz

SPIRAL2 is on the list of the European Strategy Forum on Research Infrastructures (ESFRI)

GANIL-SPIRAL1-SPIRAL2 Phase 1 Stable & RIB

SPIRAL2 is on the list of the European Strategy Forum on Research Infrastructures (ESFRI)

SPIRAL 1 upgrade

P. Delahaye

SPIRAL2 is on the list of the European Strategy Forum on Research Infrastructures (ESFRI)

SPIRAL2 Phase 1

GANIL-SPIRAL2 facility

DESIR Facility – SPIRAL2 Phase 1+

light nuclei

Timeline GANIL & SPIRAL2 (goal)

Summary

- AGATA at GANIL 2015-2019: a priority for the lab. Several campaigns:
 - AGATA+VAMOS (+LaBr3, PARIS)
 - AGATA+NEDA
 - in the future: +MUGAST, +GFM
- Upgrade SPIRAL1: new beams available in 2017
- SPIRAL2 Phase 1: first beams early 2017 for experiments
- Phase 1+ (DESIR): online in ~2019-2020
- Phase 1++ (A/q~7): looking for funds
- Phase 2: looking for funds