Neutrino oscillations: status and perspectives with accelerator beams

XVIII Roma Tre Topical Seminar on Subnuclear Physics "Neutrinos", 9 Dec. 2015

A. Longhin (LNF)

<u>A. Longhin</u> (INFN-LNF)

Outline

- Which Physics and how it is done.
- Fruitful days with present experiments

– OPERA:
$$\nu_{\mu} \rightarrow \nu_{\tau}$$
, T2K, NOvA: $\nu_{\mu} \rightarrow \nu_{e} / \nu_{\mu}$

- Starting to aim at leptonic CP violation, mass hierarchy
- The challenges for the future:
 - "
 statistics ↓ systematics"
- New ideas and initiatives in EU, JP and US
 - Hyper-K, DUNE, SB program, CERN ν plat

A vast topic ... not covered:

exotic searches, sterile neutrinos, cross section, R&D experiments, ...

A. Longhin (LNF)

v mixing and oscillations

Mass eigenstates $(v_1, v_2, v_3) \leftrightarrow$ weak eigenstates $(v_1, v_2, v_3) \leftrightarrow$ "atmospheric" $|
u_{lpha}(t)
angle = \sum_{i=1}^{3} U_{lpha i}^{*} |
u_{i}(t)
angle$ "solar" Δm_{21}^2 Δm^2_{31} U: PMNS matrix s = sin, c = cos $\mathsf{U} = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array}\right) \left(\begin{array}{cccc} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{array}\right) \left(\begin{array}{cccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array}\right)$ SuperK, K2K, MINOS, (D)CHOOZ, Daya Bay, RENO SuperK, SNO, GNO, **OPERA, T2K, NOvA T2K, MINOS, NOvA** Gallex, Borexino, KamLAND $\theta_{23} = (45.8 \pm 3.2)^{\circ}$ $\Delta m_{21}^2 = (7.53 \pm 0.18) 10^{-5} eV^2$ $\theta_{12} = (33.4 \pm 0.85)^{\circ}$ $|\Delta m^2_{22}| = (2.44 \pm 0.06) 10^{-3} \text{ eV}^2$ $\theta_{13} = (8.88 \pm 0.39)^{\circ}$ PDG2014 Long baseline experiments

CP violation? mass hierarchy $(m_{1,2} \le m_3)$? $\theta_{23} = 45^{\circ}$? Majorana/Dirac ? Symmetries? Relation with CKM ? Leptogenesis and BAU ?

A. Longhin (LNF)

2012: new scenarios from large θ_{13}

A. Longhin (LNF)

A. Longhin (LNF)

The future: learning a lot from (precisely!) measuring $v_{\parallel} \rightarrow v_{\perp}$

A. Longhin (LNF)

Learning a lot from (precisely!) measuring $v_{\mu} \rightarrow v_{e}$

- $\delta_{CP} \rightarrow$ a modulation in the spectrum of the appeared v
- The direction of the variation is opposite for ν and anti- ν beams \rightarrow use both
- Mainly a change in normalization
 - accessing the 2^{nd} maximum (at higher L and E) \rightarrow more spectral info.
- Sub-leading: crucial role of systematics and statistics

A. Longhin (LNF)

v-beams (recent past and present)

A. Longhin (LNF)

The long way to appearance

• **Disappearance** a "leading" effect: deficit of atmospheric $v_{\parallel} \rightarrow$

- 1998 discovery of v-oscillations by Super-K, MACRO, K2K \ldots

• **Appearance** on the other hand considered difficult:

• At the **solar scale**. Reactors and solar v.

 $\nu_e \! \rightarrow \! \nu_{\mu} \,$ "IMPOSSIBLE": μ is below threshold

• At the **atmospheric scale**. Atmospheric-v, artificial beams.

 $v_{\mu} \rightarrow v_{\tau}$ "DIFFICULT" ! $v_{\mu} \rightarrow v_{e}$ "RARE"(...)mass suppression, small $c\tau$ θ_{13} suppression ?Today's perspectiveConfirmed difficult, but event
by-event detection achieved by
OPERA & sk (with a much lower S/B)• Reactors: no... θ_{13} is BIG !
• Appearance seen by T2K
and NOvA (with few POT)

A. Longhin (LNF)

The OPERA road map

An experimental and technological challenge. 732 km baseline. Beam O(10) more energetic (17 GeV) than any other LBL (m_{τ}). A "fine-grained" detector O(100) more massive (1.25 kt) than the precursors SBL (i.e. CHORUS).

The CNGS beam for $v_{\mu} \rightarrow v_{\tau}$

< E _v >	17 GeV		
L / < E _v >	43 km/GeV		

The oscillation peak for L= 732 km at ~ 1.5 GeV (similar to NuMI) but here the goal is to produce τ leptons \rightarrow unbalance at higher energies

$$N(\tau) \sim Pr(\nu_{\mu} \rightarrow \nu_{\tau}) \ge \sigma_{\nu(\tau)CC}(E) \ge flux$$

Fluxes:

$(v_e + \overline{v_e}) / v_{\mu}$	0.9 %
$\overline{\mathbf{v}}_{\mu} \ \mathbf{I} \mathbf{v}_{\mu}$	2.1 %
v_{τ} prompt (from D _s)	negligible

Interaction rates (1.8 x 10^{20} pot):

```
~ 20k \nu_{\mu} CC+NC
66.4 \nu_{\tau} CC (not efficiency corrected)
```

DESIGN: 4.5.10¹⁹ pot/year, 200 days/y per 5 y

A. Longhin (LNF)

The v_{τ} detection challenge

Modular detector of "Emulsion Cloud Chambers" (or bricks)

Reconciles the needs for:

- Large mass
 - $N_{\tau} \propto (\Delta m^2)^2 M_{target}$
- Extreme granularity
 - ~ µm

A. Longhin (LNF)

09/12/2015, Roma3 annual seminar. M

Super Module 1

Super Module 2

13

$\textbf{OPERA} \, \boldsymbol{v}_{_{\boldsymbol{\tau}}} \, \textbf{appearance}$

Channel	Total background	Expected signal	Observed
$\tau \to 1 h$	0.04 ± 0.01	0.52 ± 0.10	3
$\tau \to 3h$	0.17 ± 0.03	0.73 ± 0.14	1
$\tau \to \mu$	0.004 ± 0.001	0.61 ± 0.12	1
$\tau \to e$	0.03 ± 0.01	0.78 ± 0.16	0
Total	0.25 ± 0.05	2.64 ± 0.53	5

5 candidates fulfilling the kinematic selection defined in the experiment proposal

5.1 σ exclusion of the background-only hypothesis

 \rightarrow

A. Longhin (LNF)

T2K

500 members 59 istitutes 11 countries

First "off-axis" beam

- $2.5^{\circ} \rightarrow \text{peak at} \sim 0.6 \text{ GeV}$
- Enriched in Quasi-elastic interactions (good measurement of E_v)
- Reduced instrinsic \boldsymbol{v}_{a} background
- Reduced NC π^0 ~backg. from D.I.S.
- Double detector: 280 m and 295 km

A. Longhin (LNF)

09/12/2015, Roma3 annual seminar. Neutrino oscillations with beams.

3000

2500

2000

1500

1000

500

0.5

(Flux × x-section)

OA0°

OA2°

OA3°

0A2.5°

T2K runs

A. Longhin (LNF)

v disappearance μ

Approximate value of Δm_{23}^{2} known at design phase.

Maximal suppression exactly at peak – not the case f.e. in MINOS.

446 ± 23 exp. (no osc.) 120 obs.

A. Longhin (LNF)

2

 E_{ν}^{rec}

18

16

12

10

8

6

4

2

0

events/0.2GeV

A. Longhin (LNF)

T2K: anti- v_e appearance

3 events observed in the current sample (4×10^{20} POT)

Short term (1 year) goal: 9.5×10^{20} POT

- 2σ rejection for no anti- v_a appearance
- 60% chance of 99 CL observation

Next step: joint v+anti-v fit

First results on anti-numu disappearance shown later on.

A. Longhin (LNF)

The NOvA experiment

A. Longhin (LNF)

The NOvA detectors

A. Longhin (LNF)

NOvA: v μ μ

 2.74×10^{20} POT (8% of planned)

- 201 expected without oscillation
- 33 observed

 $\Delta m_{32}^2 = 2.37 + 0.16_{-0.15} \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta_{23} = (0.51 \pm 0.10)$

A. Longhin (LNF)

MINOS+

MINOS, MINOS+ Far Detector Data

Prediction, No Oscillations

MINOS, MINOS+ Combined Fit

The MINOS detector continues being illuminated by the on-axis beam in "NOvA configuration" (yielding a higher-E beam than before \sim 7 GeV) \rightarrow strengthen the measurement of disappearance (especially far from of the oscillation maximum)

 2.99×10^{20} POT v_u-mode MINOS+

10.71 $\times 10^{20}$ POT $\nu_{\mu}\text{-mode MINOS}$ 3.36 $\times 10^{20}$ POT $\overline{\nu}_{\mu}\text{-mode MINOS}$

MINOS+ Preliminary

15

20

10

Reconstructed v_{μ} Energy (GeV)

1200

1000

800

600

400

200

Events / GeV

09/12/2015, Roma3 annual seminar. Neutrino oscillations with beams.

Ratio to No Oscillations

50

30

Summary on disappearance

Neutrinos

Anti-neutrinos

T2K anti-v T2K v

NEW! T2K result today

on the arXiv 1512.02495

- Both for neutrinos and anti-neutrinos
 - MINOS: still leading for Δm^2 (~ E of the "dip")
 - T2K: leading for θ_{23} (depth of the "dip")
- No significant hints for deviation from maximal mixing or CPT effects

A. Longhin (LNF)

A. Longhin (LNF)

09/12/2015, Roma3 annual seminar. Neutrino oscillations with beams.

favored

Calorimetric energy (GeV)

NOvA: δ_{CP} with reactor constraint

For all $\sin^2 2\theta_{23}$ in [0.4,0.6]

LEM analysis

- IH disfavored at > 2.2σ
- NH mildly disfavored (>1 σ) for $\delta \in [0, \pi]$

LID analysis

• IH mildly disfavored (>1 σ) for $\delta \in [0, 0.8\pi]$

Both LEM and LID prefer

- normal hierarchy
- $\delta \sim 3/2\pi \ (= -\pi/2)$

In the same direction of T2K

T2K excludes (90% CL):

0.15 $\pi < \delta_{_{\rm CP}} < 0.83 \pi$ (NH) -0.08 $\pi < \delta_{_{\rm CP}} < 1.09 \pi$ (IH)

A. Longhin (LNF)

Looking forward

Near and far detectors

Ideally ... in a near-far double detector oscillation experiment

 $N_{events}(E_{\nu}) = \sigma_{\nu}(E_{\nu})\Phi(E_{\nu})$

 $N_{events}^{far}(E_{\nu}) = \sigma_{\nu}(E_{\nu})\Phi(E_{\nu})P_{osc}(E_{\nu})$

$$\frac{N_{events}^{far}(E_{\nu})}{N_{events}(E_{\nu})} = P_{osc}(E_{\nu})$$

Neutrino cross sections factorize out But beams are not monochromatic \rightarrow we need to determine E₁ event by event

Oscillations introduce differences in the flux spectrum: cross-sections do not cancel out

We need: **φ(E**, **)**, **σ(E**, **)**, **P(E**, **|E'**, **)**

A. Longhin (LNF)

Uncertainty on events at SK after the T2K near detector constraint

A. Longhin (LNF)

09/12/2015, Roma3 annual seminar. Neutrino oscillations with beams.

T2K systematics today

Events prediction at Super-K with the near detector constraints:

- ~ 7 % for v
- $\sim 10\%$ for anti-v

Largest contributions:

- difference in nuclear targets between far and near
- effect of the poorly known multi-nucleon processes (MEC) cross section

		$\nu_{\mu}\text{sample}$	v_{e} sample		$\overline{ u}_{\mu}$ sample	$\overline{\nu}_e$ sample	
ν flux (with hadroproduction constraints NA61)		16%	11%		7.1%	8%	
\boldsymbol{v} flux and							
cross section	w/ ND measurement	2.7%	3.1%		3.4%	3.0%	
v cross section due to difference of nuclear target btw. near and far		5.0%	4.7%		10%	9.8%	
Final or Second Hadronic Inter	dary action	3.0%	2.4%		2.1%	2.2%	
Super-K detect	or ~7 %	4.0%	2.7%		3.8%	3.0%	
* 2015 uncertainties include additionally MEC							

 $2014 \rightarrow 2015$

~10 %

A. Longhin (LNF)

Desiderata for systematics reduction

$\phi(E_v) \times \sigma(E_v)$ at near and far

- Same target nuclei:
 - cancellation of nuclear effects, final state interactions (FSI)
- Same acceptance:
 - $\boldsymbol{\checkmark}$ avoid model dependence in the not common p-0 phase space
- Same flux (shape):
 - a tunable beam (combine different off-axis angles vPRISM) (to mimic oscill. distorsion)
 - a "not too near" NEAR (to reduce finite-distance effects)
- $\sigma(v)$ measured independently (v at near is subdominant):
 - tagged ν_{p} beams, μ facilities (nuSTORM).

Energy reconstruction P(E, |E',) at near and far

- multi-nucleon interactions, π absorption in nuclei (FSI) → non genuine CCQE (CCQE-like) → "QE formula" is applied giving bias, broadening of P(E, |E',)
 - high granularity, low-thresholds (demanding at far!)
 - neutron tagging

T2K perspectives, upgrades

- JPARC Main Ring upgrade approved: 7.8×10^{21} POT (=T2K design), 0.9 MW by 2020
- "T2K×3" (2020-25) phase (2×10²² POT). Before Hyper-Kamiokande (~2025).
- If sys. < 2-3 % "T2K×3" could give > 3σ CPV for any value of θ_{23}
- Discussions on upgrading the near/intermediate detectors already in 2020

TITUS

Tokai Intermediate Tank with Unoscillated Spectrum

- 2kt Gd doped (0.1%) water Cherenkov
- \sim 2 km from J-PARC, 2.5° off-axis
- Magnetized downstream Muon Range Detector (MRD)
- Small side MRD

0.1% Gd doping:

- 49000 b vs 0.3 b (H)
- 8 MeV γ (4-5 MeV visible)
- 90% capture efficiency

NB. > 2018 also SuperKamiokande planned to become Gd-doped (EGADS demonstrator)

Same target, similar acceptance, same flux, sensitivity to multi-nucleon with n-tagging

A. Longhin (LNF)

Hyper-Kamiokande

Ring-imaging **water Cherenkov detector** Tochibora mine: 648 m overburden (1.750 mwe) 2.5° at 295 km (= Super-K)

1 Mton mass

99.000 20" PMTs 20% photo-coverage 25.000 8" PMTs Light attenuation > 100 m @ 400 nm

A. Longhin (LNF)

Hyper-K: v_e samples & δ_{CP}

Neutrino mode: Appearance

Antineutrino mode: Appearance

A. Longhin (LNF)

09/12/2015, Roma3 annual seminar. Neutrino oscillations with beams.

 δ_{CP} [degree]

LBNF and DUNE

- (staged) 40 kt LAr detector, at the SURF site, 1300 km from FNAL
- high granularity/high precision near detector
- 1.2 MW, tunable v beam produced by the PIP-II upgrade at FNAL by 2024, evolving to a power of 2.3 MW by ~ 2030.

A. Longhin (LNF)

DUNE far detectors

A. Longhin (LNF)

DUNE: v_{e} samples, δ_{CP} , MH

Challenges

- Large cryostats ~ 13000 m³
- Deep underground activities
- Long drifts > 3.5 m
- High liquid purity at the ppt level
- High T stability ~0.3° 0.5°
- Cold FE electronics or in gas amplif.
- Low threshold signals
- Large data handling capabilities
- Automatic pattern recognition, tracking

To succeed we need to proceed in steps (for cryostats, cryogenics and detectors)

A. Longhin (LNF)

09/12/2015, Roma3 annual seminar. Neutrino oscillations with beams.

Baseline

(12.9 cm)

om chower

FNAL short baseline program

SBND, μ BooNE, ICARUS-T600

- LAr TPC R&D
- (together with the reactor's program) likely clarify the scenario of sterile neutrino disproving or confirming previous hints with beams:
 - LSND anomaly?
 - MiniBooNE low-E excess ?
 - Differences v / anti-v?

FNAL short baseline layout

A. Longhin (LNF)

CERN v platform: EHN1

S. Bertolucci at INFN CSN2

- PLAFOND : an generic R&D framework
- ✓ WA104 : ICARUS as far detector for SBN
- ✓ WA105 : demonstrator + engineering prototype for a double ph. TPC
- ✓ ProtoDUNE : engineering prototype for a single phase TPC
- Baby MIND : a muon spectrometer for the WAGASCI experiment
- ArgonCube : a modular TPC R&D

✓ For the moment CERN is not committing to any neutrino beam at CERN, in view of an agreed road map between all partners

 The CERN Neutrino Platform represents a gateway for the European Neutrino Community towards a global, organized accelerator neutrino program

 In the short- and medium-term, Europe is helping in getting a Short Baseline operational at FNAL with an agreed physics program ... and later a Long Baseline

- HKK detector components R&D
- ✓ Darkside 20K
- ✓ ARIADNE_
 - LBNF cryostat and LAr cryogenics
 - ✓ SBND cryostat and LAr cryogenics
 - <u>CERN</u> member of DUNE and SBN

A. Longhin (LNF)

Conclusions

- Neutrino oscillation physics with accelerator beams is living an exciting phase. Beautiful measurements in done/progress & good future prospects for fundamental physics.
- CPV out of reach if $\theta_{13}~$ or θ_{12} would have been small! Will δ "continue the tradition" and finally establish the (somewhat deserved) good luck of neutrino physicists ?
- Or: Will indications for (N.I., $\delta = -\pi/2$) of T2K/NOvA survive further data?
- Even with the help of Nature ... need for smart experimental designs and inputs from several sides (cross-sections, hadro-production measurements...). New ideas to reduce systematics being proposed for present and future infrastructures.
- The international scenario is getting clearer. Opportunity of a new class of large experiments: will strengthen the reach for CPV and mass hierarchy. Precision neutrino measurements. Boost the potential for unexpected discoveries (Super-K docet).

Backup slides

A. Longhin (LNF)

v_e, \overline{v}_e Cross Section Sensitivity Impact

- Perform sensitivity study where the v_e and \overline{v}_e cross sections are assigned two uncorrelated normalization systematic parameters
- The uncertainties on the normalization parameters are varied and the impact on the CPV sensitivity is studied.

- The systematic uncertainty should be controlled to <1-2% to minimize the impact on the CPV discovery sensitivity
- A. Longhin (LNF)

A. Longhin (LNF)

DUNE schedule

Indicative schedule

Hyper-K: CPV reach and $\delta_{_{CP}}$ precision

10

Normal mass hierarchy **CPV** discovery $\sigma = \sqrt{\chi^2}$ Well known detector technology + analysis. 5σ Robust/realistic estimation of 3σ systematic uncertainties 2 CPV: $\delta_{CP} = 0 \text{ or } \pi$ 50 -150 -100-50 0 100 150 δ_{CP} [degree] δ_{CP} [degree 100 5($\delta_{CP}[\%]$ Fraction of values of δ_{cr} for which CPV can be discovered 90 45 $\delta = 0$ 80 40 $\delta_{_{CP}}$ precision 70 δ **= 90** 35 60 Fraction of 30 68% CL error of 50 25 5σ 40 20 30 15 3σ 201010 10 8 2 8 10 6 Integrated beam power [MW 10⁷ sec] Integrated beam power [MW 10⁷ sec]

A. Longhin (LNF)

Two large TCPs prototypes : protoDUNE

Single phase LAr TPC

Operational in 2017, SPS calibration beams in 2018-19

A. Longhin (LNF)

Two large TCPs prototypes : WA105

Double phase LAr TPC

Operational in 2017, SPS calibration beams in 2018-19

Active volume 6x6x6 m³

A. Longhin (LNF)

A. Longhin (LNF)

Hyper-K atmospheric data

295 km → small matter effects → limited contribution from CPV induced by matter effects → clean measurement of genuine CPV

Would mass hierarchy be still unknown by the time of Hyper-K: use large samples of atmospheric neutrinos for which matter effects are definitely large.

A. Longhin (LNF)

Hyper-K: θ_{23} octant

T2K potential: θ_{23} and Δm^2_{32}

7.8e21 POT+2012 syst. err. + 50-50% v-anti-v

WAGASCI

Addresses the issues of: acceptance, target definition, external backgrounds.

Goal: 3 % error on cross section ratio (water/CH)

Plastic scintillators + WLS fibers in arrays (water/plastic) filled. Hamamatsu MPPC (SiPM) readout.

Being constructed close to ND280, INGRID

Grooves to mechanically connect orthogonal scintillator bars. Shallow enough to allow fiber housing.

A. Longhin (LNF)

Off-axis near detector analysis

Fit of v_{μ} spectrum to constrain flux X cross-section (v_{μ} also constrain v_{e} via correlation in the production mechanism). 3 subsamples with final state π "CC 0π ", "CC 1π " and "CC other"

High pressure TPC

- No passive material (interactions in the gas)
- Low thresholds (5-10 bar pressure) disentangle multi-nucleon processes from CCQE
- Realistic gases: He, Ne, Ar, CF₄
- H and D would "by-pass" nuclear physics ... not realistic
- In principle more appealing for the US program (Argon). Difficult to use CO₂, H₂O (for water)

Taken from F. Sanchez

TITUS + HyperK: impact on δ_{CP}

A. Longhin (LNF)

vPRISM

Extract the energy dependence by measuring the rates and final state kinematics over a range of off-axis angles

Detector moved up and down a shaft ~ 1 km baseline: span: 1-4 degrees

WC detector: 6 m diameter x 10 m height 40 % photo-coverage: 3120 8" PMT or 7385 5" PMT

A. Longhin (LNF)

- An intermediate phase: "T2K x 3"
 - 3x T2K statistics (20×10^{21} POT)

A. Longhin (LNF)

The tool: accelerator-based v-beams (prehistory)

The tool: accelerator-based v-beams (history)

A. Longhin (LNF)