

Precision Neutrino Physics with Neutrino Factories

Topical Seminar: Neutrino Physics (in memoria di Guido) Universita di Roma Tre

Paul Soler, 18 November 2015

Guido Altarelli

- My first encounter with Guido was at the St Andrews Summer School on "Neutrinos in Particle Physics, Astrophysics and Cosmology" in 2006
 - He gave three lectures on Neutrino Masses and Mixing and enjoyed time in Scotland: http://www-archive.ph.ed.ac.uk/sussp61/
 - Lectures documented in text book edited by CRC Press

Model predictions

- Guido's approach of using discrete flavour groups to understand neutrino mixing matrices and masses leads to a number of models and predictions of patterns
 - There are distinct pre(post?)dictions for the mixing angles and sum rules with the neutrino CP phase δ_{CP}
 - To test predictions requires very accurate measurements of mixing angles, knowledge of neutrino masses and accuracy in CP phase $\Delta\delta_{\rm CP}$ ~ 3°-4°
 - Models can be tested only if neutrino physics enters into precision era: long baseline neutrino oscillation experiments, neutrino factories, double beta decay and neutrino mass measurements

Model predictions

- Sum rule predictions for δ_{CP} need to be tested to advance understanding of neutrino mixing and underlying theory
- □ CP violation searches from DUNE or Hyper-Kamiokande will give error in the measurement of CP phase $\Delta\delta_{CP} \sim 20^{\circ}$
- **Distinguish between models requires** $\Delta \delta_{CP} < 5^{\circ}$ **Neutrino Factories**

DUNE

Expected flux errors ~5%, Δδ_{CP}~10°-15° DUNE Physics Volume CDR, 2015

CP Violation Sensitivity

fact

Neutrino beams

- Neutrino beams have not evolved conceptually since 1963, with the invention of the van der Meer horn
 - Proton beam hits target to create secondary pions, kaons
 - Secondaries are focused by horns
 - Secondaries decay in decay pipe
 - Absorber material and "beam dump" removes charged particles
 - Detectors along beam line are used to monitor flux and direction
- Neutrino flux accuracy depends on secondary pion and kaon production from protons on target: ~ 10-20%

How can we improve CP precision?

- Precision requirement for CP violation:
 - For 75% of CP asymmetry coverage at 3σ : A_{CP} as low as 5%
 - Requires 1.5% measurement of $P \overline{P}$ (~1% syst. error), but we measure rate:

Neutrinos (in memoria di Guido), Roma Tre: 9 December 2015

Long baseline physics

- Precision requirement for CP violation:
 - In disappearance experiment we can satisfy:

Neutrino Factory

International Design study for a Neutrino Factory (IDS-NF)

Optimisation of Neutrino Factory

• Optimisation for high θ_{13} : 10 GeV muons and 2000 km

Neutrino Factory Baseline

- Proton driver: 4 MW
 - Proton beam ~8 GeV on target
- Target, capture and decay
 - Create π, decay into μ
 (R&D: MERIT)
- Bunching and phase rotation
 - Reduce ΔE of bunch
- Ionization Cooling
 - Reduce transverse emittance (R&D: MICE)
- Acceleration
 - − 120 MeV \rightarrow 10 GeV with RLAs
- Decay ring
 - Store for ~100 turns
 - Long straight sections
 - 10²¹ muons/year

issue on Muon Accelerators

Muon Ionization Cooling Experiment (MICE)

- MICE: demonstration of ionization cooling at Rutherford Appleton Laboratory by 2018:
 - Two RF cavities and LiH absorbers

INFN contribution (Milano, Napoli, Pavia, Roma Tre): crucial contribution to PID detectors

Performance 10 GeV Neutrino Factory

15

 Analysis shows that 10 GeV Neutrino Factory, with 10²¹ μ/year, 100 kton MIND at 2000 km gives best sensitivity to CP violation

Neutrino Factory CP sensitivity

 Analysis shows that 10 GeV Neutrino Factory, with 10²¹ μ/year, 100 kton MIND at 2000 km gives best sensitivity to CP violation

Neutrinos (in memoria di Guido), Roma Tre: 9 December 2015

Muon Accelerator Staging Programme

- NuMAX is Neutrino Factory in Fermilab context (5 GeV to Sanford Lab, at 1300 km) – similar sensitivity to IDS-NF
- Synergy with Muon Collider components

Physics performance of NuMAX

□ Physics performance in terms of fraction of CP phase δ with measurement accuracy at or below $\Delta\delta$ P. Huber

Neutrinos (in memoria di Guido), Roma Tre: 9 December 2015

nuSTORM: Neutrinos from STORed Muons

nuSTORM: first stage neutrino factory with 3.8 GeV/c muons that does not rely on any new technology $\pi^* \rightarrow \mu^* + \nu_{\mu}$ Target Neutrino Beam Muon Decay Ring

3.8 GeV/c

226 m

Pions of 5 Gev/c captured and injected into ring.

 $\mu^+ \rightarrow e^+ + \overline{\nu}_u + \nu_e$

- 52% of pions decay to muons before first turn: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
- This creates a first flash of neutrinos from pion decays
- Ring designed to store muons with $p = 3.8 \text{ GeV} \pm 10\%$
- Muons decay producing neutrinos: $\mu^+ \rightarrow e^+ + \overline{\nu}_{\mu} + \nu_e$
- Creates hybrid beam of neutrinos from pion & muon decay

Neutrinos (in memoria di Guido), Roma Tre: 9 December 2015

19

Physics motivation

- Physics motivation of nuSTORM:
 - Creation of a neutrino beam with a flux accuracy of 10⁻³ for neutrino scattering physics: "the neutrino light source"
 - Measurement of v_e cross sections and nuclear effects in neutrino-nucleus collisions, essential for long baseline neutrino oscillation programme
 - Definitive resolution of sterile neutrino problem and search for short-baseline neutrino oscillations
 - Creation of a test bed for muon accelerator R&D for future high intensity neutrino factories and muon collider

A new way of doing neutrino physics

Adey, Bayes, Bross, Snopok, Ann. Rev. Nucl. Part. Sci. 2015 65:145-75.

nuSTORM Facility

21

- nuSTORM facility:
 - 120 GeV protons on carbon or inconel target (100 kW)
 - NuMI-style horn for pion collection
 - Injection pions (5 GeV/c ± 10%) into storage ring: 0.09 π /POT

nuSTORM Flux and Spectrum

nuSTORM flux and energy spectrum

Use muon decay neutrinos to calibrate hadron decay neutrinos

- v_{μ} from pion decay $\pi^+ \rightarrow \mu^+ + v_{\mu}$ flux: 6.3×10¹⁶ v/m² at 50 m
- v_e from muon decay $\mu^+ \rightarrow e^+ + \overline{v}_{\mu} + v_e$ flux: 3.0×10¹⁴ v/m² at 50 m
- v_{μ} from kaon decay $K^+ \rightarrow \mu^+ + v_{\mu}$ flux: 3.8×10¹⁴ v/m² at 50 m
- Used for cross-section measurements and short baseline oscillations

nuSTORM Event Rates

- Flux uncertainties for nuSTORM from beam diagnostics: < 1%</p>
- Event rates per 10²¹ POT in 100 ton Liquid Argon at 50 m

μ^+		μ^-	
Channel	Nevts	Channel	N _{evts}
$\bar{\nu}_{\mu} \text{ NC}$	1,174,710	$\bar{\nu}_{e}$ NC	1,002,240
$\nu_e NC$	1,817,810	$ u_{\mu} \text{ NC} $	2,074,930
$\bar{ u}_{\mu}$ CC	3,030,510	$\bar{\nu}_e$ CC	2,519,840
ν_e CC	5,188,050	$ u_{\mu} { m CC}$	6,060,580
π^+		π^-	
$ u_{\mu} \text{ NC} $	14,384,192	$\bar{ u}_{\mu}$ NC	6,986,343
ν_{μ} CC	41,053,300	$\bar{ u}_{\mu}$ CC	19,939,704

Limited by detector systematics:

Neutrino interactions at nuSTORM

- Very rich physics programme (just some examples):
 - Electron neutrino v_e and \overline{v}_e cross-section measurements
 - π^0 production in neutrino interactions
 - Charged π and K production
 - Neutrino-electron scattering
 - Neutrino-nucleon scattering: charged current and neutral current (NC/CC ratio and $sin^2\theta_W$)
 - Nuclear effects in neutrino interactions
 - Semi-exclusive and exclusive processes: measurement of $K_s, \Lambda, \overline{\Lambda}$ production
 - New physics and exclusive processes: test of $v_{\mu} v_{e}$ universality, heavy neutrinos, eV-scale pseudo-scalar penetrating particles

Neutrinos (in memoria di Guido), Roma Tre: 9 December 2015 24

fact

Over 60 physics topics already identified: PhD theses

Neutrino interactions at nuSTORM

– Expected accuracy for v_{μ} and v_{e} cross-sections

nuSTORM influence on LBL sensitivities

26

- Influence of measurement of cross-sections with less than 1% precision as potentially provided by nuSTORM
- Significantly improves δ_{CP} accuracy in DUNE and HyperK

nuSTORM for accelerator R&D

- nuSTORM: testbed for 6D muon cooling experiment
 - At end of straight: 3.5 m iron pion absorber

– After absorber: $10^{10} \mu$ /pulse between 100-300 MeV/c

Short baseline physics

LSND and MiniBooNE hints of \overline{v}_e and v_e appearance

 $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}) \sim 0.003$ and reactor anomaly (6% \overline{v}_{e} deficit)

Short baseline physics

To resolve sterile neutrino hyposthesis need to verify consistency between appearance and disappearance:

$$P(v_{\mu} \rightarrow v_{e}) \leq 4 \left(1 - P(v_{\mu} \rightarrow v_{\mu})\right) \left(1 - P(v_{e} \rightarrow v_{e})\right)$$

- nuSTORM could probe all possible sterile neutrino appearance and disappearance channels (if $E_v > \tau$ threshold) to test paradigm

$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \overline{\nu}_e \nu_\mu$	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	$ u_{\mu} ightarrow u_{\mu}$	disappearance
$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	$ u_{\mu} ightarrow u_{e}$	appearance (challenging)
$\overline{ u}_{\mu} ightarrow \overline{ u}_{ au}$	$ u_{\mu} ightarrow u_{ au}$	appearance (atm. oscillation)
$\nu_e \rightarrow \nu_e$	$\bar{\nu}_e \to \bar{\nu}_e$	disappearance
$ u_e ightarrow u_\mu$	$\bar{ u}_e ightarrow \bar{ u}_\mu$	appearance: "golden" channel
$ u_e \rightarrow u_{ au}$	$\bar{\nu}_e ightarrow \bar{ u}_ au$	appearance: "silver" channel

Assume two detectors:

Super-saturated Magnetised Iron: SuperBIND

240 kA from 8 Superconducting **Trasmission Lines** 30

- Short-baseline oscillation search with near detector at 50 m and far detector at 2 km, 10²¹ POT exposure
- Appearance and disappearance multi-variate analyses Adey et al., PRD 89 (2014) 071301

Appearance efficiencies

Disappearance efficiencies

- Short-baseline oscillation search with near detector at 50 m and far detector at 2 km, 10²¹ POT exposure
- Appearance and disappearance multi-variate analyses Adey et al., PRD 89 (2014) 071301

Appearance sensitivity

nuSTORM at Fermilab

nuSTORM could be sited at Fermilab Proposal to FNAL PAC: arXiv: 1308.6822

Near Detector Hall

Far Detector Hall (D0)

Target building

nuSTORM at CERN

- nuSTORM could be sited at CERN
- Target station in North Area
 Eol to CERN: arXiv:1305.1419

 For two detector oscillation search: near detector in North Area and far detector in Point 1.8

Real Property lies e Moulin des Pont la Motte les Jan Tattes de Meyrin POINT 1.8 POIN. LARGE HAD MEYRIN .

Conclusions

- Expect discovery of CP violation in neutrinos within 15 years
- Neutrino Factories from muon decay can bring neutrino physics into precision era
- First stage: nuSTORM to measure neutrino cross-sections with ~1% precision, can resolve sterile neutrino issue with 10σ sensitivity and can be used to create 6D cooling R&D facility
- nuSTORM would be a fantastic contribution to world-wide neutrino programme complementing long baseline experiments
- Second stage: develop neutrino factory for ultimate precision of CP phase delta $\Delta \delta_{CP} \sim 4^{\circ}$.
- Neutrino factories are a stepping stone towards a muon collider – R&D is always delivering physics along the way

Backup Slides

- Short-baseline oscillation search with near detector at 50 m and far detector at 2 km, 10²¹ POT exposure
- Appearance and disappearance multi-variate analyses Adey et al., PRD 89 (2014) 071301

Appearance sensitivity

Disappearance sensitivity

NuMAX: Neutrino Factory FNAL/Sanford

- Neutrino Factory with 10²⁰ straight muons decays/year @ 5 GeV
- Muon ring at 5 GeV pointing neutrino beam towards Sanford
- A 10kT MIND or magnetized LAr detector upgraded from LBNE

NuMAX: Neutrino Factory FNAL/Sanford

- Add small amount of 6D cooling
- Neutrino Factory with 5×10²⁰ straight muon decays/year @ 5 GeV
- Muon ring at 5 GeV pointing neutrino beam towards Sanford

NuMAX+: upgrade NuMax

- Neutrinos from a Muon Accelerator CompleX (NuMAX+)
 - Neutrino Factory with 10²¹ straight muons decays/year @ 5 GeV
 - Muon ring at 5 GeV pointing neutrino beam towards Sanford
 - Increased proton power and/or larger detectors

Higgs Factory

- Higgs Factory: production of Higgs at 126 GeV CM
 - Collider capable of providing ~13,500 Higgs events per year with exquisite energy resolution: direct Higgs mass and width
 - Possible upgrade to a Top Factory with production of up to 60000 top particles per year

High Energy Muon Collider

- Multi-TeV muon collider:
 - If warranted by LHC results a muon collider can reach up to 10 TeV
 - Likely offers the best performance, least cost and power consumption of any lepton collider operating in the multi-TeV regime.

