Solar, atmospheric and **REACTOR** neutrinos... what we can learn without a beam

Stefano Dusini INFN Padova

09/12/2015

SOLAR NEUTRINOS: first hint toward **neutrino oscillation**

SNO: Heavy water Cerenkov detector

09/12/2015

Adiabatic conversion

Observation of **pp neutrinos** by Borexino (@LNGS) Confirmed the adiabatic flavour neutrino conversion in the Sun

8

SOLAR NEUTRINOS + KamLAND

Disappearance probability is invariant under CP $P(\nu_e
ightarrow
u_e) = P(ar{
u}_e
ightarrow ar{
u}_e)$

Global fit to **SOLAR NEUTRINO DATA + KamLAND**

Transition region

Important to test of flavour conversion in the sun

- up-turn
- Day/Night asymmetry @ up-turn

Extra sterile neutrino with $Dm_{01}^2 = 1.2 \times 10^{-5} \text{ eV}^2$, and $\sin^2 2a = 0.005$

Non-standard interactions with $e_{D}^{u} = -0.22, e_{N}^{u} = -0.30$ $e_{D}^{d} = -0.12, e_{N}^{d} = -0.16$

SuperKamiokande

Atmospheric neutrinos and mass hierarchy

Like solar neutrinos are affected by the interaction with matter, atmospheric neutrinos crossing the earth can undergo adiabatic flavour conversion induced by (1,3) mixing.

$$P_{\mu e} = \sin^2 heta_{23} \sin^2 2 heta_{13}^M \sin^2 \left(\Delta^M rac{L}{4E}
ight) \, .$$

$$\Delta^M\simeq \sqrt{igl(\Delta m^2_{31}\cos2 heta_{13}-Aigr)^2-igl(\Delta m^2_{31}\sin2 heta_{13}igr)^2}$$

$$\sin^2 2 heta_{13}^M \simeq rac{\Delta_{31}^2 \sin 2 heta_{13}}{\Delta^M} \qquad \qquad A = \pm 2\sqrt{2}G_F n_e E_
u$$

Like for solar neutrinos "matter effects" are sensitive to the sign of Δm_{31}^2

$A=\Delta m^2_{31}\cos2 heta_{13}$	Either neutrinos or anti-neutrinos cross the resonance depending of the sign of Δm_{31}^2	
		Resonance for E _v = [5, 8] GeV

09/12/2015

Measurement possible if:

- the detector is capable to select neutrinos from antineutrinos (magnetize iron calorimeter)
- good knowledge of neutrino and anti-neutrino fluxes exploiting σ(v) ≠ σ(anti-v)

• Large mass

Smeared distributions

Muon- and electron-channels contribute to net hierarchy asymmetry. Electron channel more robust against detector resolution effects:

PINGU

Precision IceCube Next Generation Upgrade

Letter of Intent PINGU- arXiV:1401.2046

50

0

100

09/12/2015

-50

200 X (m)

150

Km³-ORCA

Oscillation Research with Cosmics in the Abyss

115 lines, 20m spaced,18 DOMs/line, 6m spacedInstrumented volume ~3.8 Mt,2070 optical module.

- Digital photon countingDirectional information
- Directional information
- Wide angle view

INO-ICAL

ICAL Collaboration (Ahmed Shakeel et al.) arXiv: 1505.07380 [physics.ins-det]

The 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO)

Energy and direction of the muons; energy of multi-GeV hadrons; charge of muon

The energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range.

09/12/2015

Measure hierarchy in vacuum: JUNO

(+) Normal, (-) inverted hierarchy

$$P_{VAC}^{3\nu} = c_{13}^4 P_{VAC}^{2\nu} + s_{13}^4 + 2s_{13}^2 c_{13}^2 \sqrt{P_{VAC}^{2\nu}} \cos(2\Delta_{ee} \pm \varphi)$$

Maximal sensitivity @ minimum of Δm²₂₁ oscillation S.Dusini - INFN Padova $c_{ab} = \cos heta_{ab}$

 $s_{ab} = \sin \theta_{ab}$

JUNO for Mass Hierarchy

UNO

JUNO detector

Large mass liquid scintillator → statistics Extreme high energy resolution 3% @ 1MeV → reconstruct the "wiggles" Energy non-linearity < 1% → not to fake MH effect

✓ 77% Photocathode coverage
 ✓ LS attenuation length ~ 20 m
 ✓ PMT QE ~ 35%

	KamLAND	BOREXINO	JUNO
LS mass	1 kt	0.5 kt	20 kt
Energy Resolution	6%/√ <i>E</i>	5%/√ <u>E</u>	$3\%/\sqrt{E}$
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

09/12/2015

Mass hierarchy sensitivity curves

Mass hierarchy is a difficult measurement which require a proper treatment of the systematics

Precision measurements

Large anti-v_e statistics ~ 15 k events/year

Unprecedented precision in measurement of "solar" oscillation parameters.

Important for CP @ LBL experiments

	Stat. only	Stat. + sys.
$sin^2 \theta_{12}$	0.54 %	0.67 %
Δm^2_{21}	0.24 %	0.59 %
Δm² _{ee}	0.27 %	0.44 %

Probing the unitarily of U_{PMNS} to 1% level

Reactor neutrinos: Sterile neutrinos

Recent calculation of anti- v_e flux from reactor are few % higher the observed eV sterile neutrino?

Conclusions

Neutrino natural beam are a great opportunity to study neutrino propertiesgreat probe for astrophysical, cosmological and geological studies

With the measurement of θ_{13} neutrino physics is entering in the **precision era**.

Solar Neutrinos:	 Tension on Δm²₂₁ Up-turn in the matter-vacuum transition region Day-Night asymmetry New physics? sterile neutrinos?, non standard interactions?
Mass Hierarchy:	- θ_{13} large has open the opportunity for MH and CP measurement - Vacuum Oscillation vs. Matter Effects: two complementary approaches \rightarrow redundancy and consistency checks

Backup slides

Detecting Reactor Antineutrino

The almost isotopic flux of primary cosmic ray imply that the neutrino flux at any location for Ev > 2GeV is up-down symmetric

$$\phi_{\nu}^{(A)}(\theta_z^{AB}) = \phi_{\nu}^{(B)}(\pi - \theta_z^{AB})$$

Since the production of neutrino in the atmosphere is uniform

$$\phi^{(A)}_
u(heta^{AB}_z)=\phi^{(B)}_
u(heta^{AB}_z)$$

which imply $\phi_{\nu}^{(A)}(\theta_z^{AB}) = \phi_{\nu}^{(A)}(\pi - \theta_z^{AB})$

LEPTON MIXING

Mixing parameters $tan^{2}\theta_{12} = |U_{e2}|^{2} / |U_{e1}|^{2} \sim 1/2$ $sin^{2}\theta_{13} = |U_{e3}|^{2} = 0.022$ $tan^{2}\theta_{23} = |U_{\mu3}|^{2} / |U_{\tau3}|^{2} \sim 1.0$ Mixing matrix: $v_{f} = U_{PMNS} v_{mass}$ $\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U_{PMNS} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$

Standard parametrization

 $U_{PMNS} = U_{23}I_{\delta}U_{13}I_{-\delta}U_{12}$

 $I_{\delta} = \text{diag}(1, 1, e^{i\delta})$

S.Dusini - INFN Padova

LEPTON MIXING

$\frac{v_e}{v_{\mu}v_{\tau}}$

$\tan^2 \theta_{12} = U_{e2} ^2 / U_{e1} ^2$	~ 1/2
$\sin^2 \theta_{13} = U_{e3} ^2$	= 0.022
$\tan^2 \theta_{23} = U_{\mu 3} ^2 / U_{\tau 3} ^2$	~ 1.0

Mixing parameters

 $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$