Neutrino masses and mixing angles: a tribute to Guido Altarelli

Padova, December 9 ${ }^{\text {th }} 2015$

XVIII Roma Tre Topical Seminar on Subnuclear Physics: Neutrinos (in memoria di Guido)

Ferruccio Feruglio
Universita' di Padova

Guido Altarelli [1941-2015]: a true giant of particle physics. His contributions to physics span all subjects, from strong to electroweak interactions, from neutrinos to theories beyond the Standard Model.

His best known contribution is the derivation of the QCD evolution equations for parton densities (1977) known as the Altarelli-Parisi or DGLAP equations.

Here:
following an historical path, I will describe his contribution to the field of neutrino masses and mixing angles

- member of the Polish Academy of Sciences
- 2011 Julius Wess Award
- 2012 J. J. Sakurai Prize for Theoretical Particle Physics [APS]
- 2015 High Energy and Particle Physics Prize - EPS HEPP Prize

Guido "principles" about neutrinos

a new insight into the flavour puzzle?
Quark sector reasonably well-known at the time, but baseline model for quark masses and mixing angles missing.
neutrino masses and large ϑ_{23} were interesting new inputs
[Parodi, Rudeau, Stocchi 9802289]

Figure 1: The allowed region for $\bar{\rho}$ and $\bar{\eta}$ using the parameters listed in Table 1. The contours at 68% and 95% are shown. The full lines correspond to the central values of the constraints given by the measurements of $\frac{V_{u b}}{V_{c b}},\left|\epsilon_{K}\right|$ and Δm_{d}. The dotted curve corresponds to the 95% C.L. upper limit obtained from the experimental limit on Δm_{s}.

violation of L at a large scale M

" Given that neutrino masses are certainly extremely small, it is really difficult from the theory point of view to avoid the conclusion that L conservation must be violated. In fact, in terms of lepton number violation the smallness of neutrino masses can be explained as inversely proportional to the very large scale where L is violated, of order $M_{G U T}$ or even $M_{P l}$."

$$
m_{v} \approx \sqrt{\Delta m_{a t m}^{2}} \approx \frac{(\mathrm{EWscale})^{2}}{M} \square M \approx 10^{15} \mathrm{GeV}
$$

"the most impressive numerology that comes out from neutrinos"
very plausible that thissarises from the see-saw mechanism
the simplest realization (type I) needs a right-handed neutrino v^{c}
"We consider that the existence of RH neutrinos ν^{c} is quite plausible because all GUT groups larger than $\operatorname{SU}(5)$ require them. In particular the fact that ν^{c} completes the representation 16 of $\mathrm{SO}(10): 16=\overline{5}+10+1$, so that all fermions of each family are contained in a single representation of the unifying group, is too impressive not to be significant."
"GUTs are the most attractive conjecture for the large scale picture of particle physics. GUT is not the SM, is beyond the SM, but is the most standard physics beyond the SM. Most of us think that there should be something like a GUT."
[GA, Neutrino 2004, Paris]

neutrino masses potentially related to the other charged fermion masses in a GUT
"another big plus of neutrinos is the elegant picture of baryogenesis through leptogenesis (after LEP has disfavoured BG ath the weak scale)"

1998 - the work starts: textures

$$
\begin{gathered}
m_{\nu}=U m_{\text {diag }} U^{T} \\
\text { in the flavour basis } \\
U_{f i}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & -1 / \sqrt{2} \\
0 & 1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ccc}
c & -s & 0 \\
s & c & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

neglecting $\Delta m_{\text {sol }}^{2}$ and ϑ_{13} and taking $\vartheta_{12}=\pi / 4$ or 0
if see-saw, degeneracy need conspiracy between $m_{D}{ }^{v}$ and M. m_{v} is quadratic in $m_{D}{ }^{v}$, any hierachy in $m_{D}{ }^{\nu}$ gets amplified in m_{v}

$\frac{I}{\frac{11}{1}}$		$m_{\text {diag }}$	double maximal mixing	single maximal mixing
	A	Diag[0,0,1]	$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 / 2 & -1 / 2 \\ 0 & -1 / 2 & 1 / 2\end{array}\right]$	$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 / 2 & -1 / 2 \\ 0 & -1 / 2 & 1 / 2\end{array}\right]$
$\begin{gathered} I \\ H \\ 11 \\ \infty \end{gathered}$	B1	Diag $[1,-1,0]$	$\left[\begin{array}{ccc}0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 0 & 0 \\ 1 / \sqrt{2} & 0 & 0\end{array}\right]$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 / 2 & -1 / 2 \\ 0 & -1 / 2 & -1 / 2\end{array}\right]$
	B2	Diag[1,1,0]	$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 2 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2\end{array}\right]$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 2 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2\end{array}\right]$
0	C0	Diag[1,1,1]	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\begin{gathered} c \\ 0 \\ \varepsilon \\ 0 \\ 0 \\ 0 \\ 0 \\ 11 \\ 0 \end{gathered}$	C1	Diag [-1,1,1]	$\left[\begin{array}{ccc}0 & -1 / \sqrt{2} & -1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / 2 & -1 / 2 \\ -1 / \sqrt{2} & -1 / 2 & 1 / 2\end{array}\right]$	$\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
	C2	Diag[1,-1,1]	$\left[\begin{array}{ccc}0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / 2 & -1 / 2 \\ 1 / \sqrt{2} & -1 / 2 & 1 / 2\end{array}\right]$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right]$
	C3	Diag [1, 1,-1]	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

Guido's favorite texture

$$
\begin{aligned}
& m_{v} \approx\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & x^{2} & x \\
0 & x & 1
\end{array}\right) m \\
& \text { large mixing requires degenerate states? } \\
& m_{3}=\left(1+x^{2}\right) m \quad m_{1,2}=0 \\
& \text { here } x=O(1) \text { implies large mixing and } \operatorname{det}[23]=0 \\
& \text { guarantees the large splitting needed by atm } v \\
& \Delta m_{a t m}^{2}=m^{2}\left(1+x^{2}\right)^{2} \quad \sin ^{2} 2 \vartheta_{23}=\frac{4 x^{2}}{\left(1+x^{2}\right)^{2}} \\
& \sin ^{2} 2 \vartheta_{23} \geq 0.9 \quad \text { [2000] } \\
& 0.7 \leq x \mid \leq 1.4 \\
& \vartheta_{13}=0 \\
& \Delta m_{\text {sol }}^{2}=0 \quad \vartheta_{12} \text { undetermined }
\end{aligned}
$$

when embedded in $S U(5)$, compatible with small quark mixing angles
assumptions
-- minimal SU(5) field content (3 light neutrinos)
-- Dirac masses of u, d, e, v dominated by third generation [LO]

$$
\begin{array}{ll}
\overline{5}=\left(l, d^{c}\right) & \Phi_{5}=\left(\Phi_{D}, \Phi_{T}\right) \\
10=\left(q, u^{c}, e^{c}\right) & \bar{\Phi}_{5}=\left(\bar{\Phi}_{D}, \bar{\Phi}_{T}\right)
\end{array}
$$

fermion masses in minimal $S U(5)$

$$
\begin{aligned}
& 10 y_{u} 10 \Phi_{5} \xrightarrow{10} y_{u}^{\text {diag }} \\
& \overline{5} \frac{w}{M} \overline{5} \Phi_{5} \Phi_{5} \xrightarrow{\overline{5}} \quad m_{v}^{\text {diag }} \quad>\begin{array}{l}
\text { must be corrected for } 1^{\text {st }} \text { and } 2^{\text {nd }} \\
\text { generations but OK at the }
\end{array} \\
& \overline{5} y_{d} 10 \bar{\Phi}_{5} \\
& \longrightarrow y_{e}=y_{d}^{T} \\
& \text { must be corrected for } 1^{\text {st }} \text { and } 2^{\text {nd }} \\
& \text { generations, but OK at the LO } \\
& \text { contains both } V_{C K M} \text { and } U_{\text {PMNS }} \\
& \left(d^{c} l\right) y_{d}\binom{q}{e^{c}} \bar{\Phi}_{5} \\
& \text { LEFT q mixing } \leftrightarrow \text { RIGHT e mixing } \\
& \text { RIGHT q mixing } \leftrightarrow \text { LEFT e mixing } \\
& V_{C K M} \approx 1 \text {-> small LEFT quark mixing } \\
& \text { RIGHT quark mixing completely free } \\
& \text { [not measurable in weak interactions] } \\
& \text { non-hermitian } y_{d} \\
& y_{d}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & x \\
0 & 0 & 1
\end{array}\right) \\
& \text { [Hagiwara, Okamura '98: } \\
& \text { Berezhiani, Rossi '98 } \\
& \text { Altarelli, F. '98] } \\
& y_{d}^{+} y_{d}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad V_{C K M}=1 \times U\left(\boldsymbol{\vartheta}_{C}\right) \\
& y_{d} y_{d}^{+}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & x^{2} & x \\
0 & x & 1
\end{array}\right) \\
& U_{P M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right) \times U\left(\vartheta_{12}\right)
\end{aligned}
$$

for a long time prejudice was in favour of hermitian textures $y_{u, d}$ because they were predictive:
-- Gatto Sartori Tonin relation $\sin \vartheta_{C} \approx \sqrt{\frac{m_{d}}{m_{s}}}$
-- Fritzsch textures
well-compatible with the see-saw and very stable versus M
$\overline{5} \frac{w}{M} \overline{5} \Phi_{5} \Phi_{5} \quad$ from $\quad 1 y_{v} \overline{5} \Phi_{5}+1 M 1$
assuming
$y_{v} \approx y_{u} \approx\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \longmapsto m_{v}=y_{v}^{T} M^{-1} y_{v} v_{u}^{2} \approx\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \frac{v_{u}^{2}}{M_{33}} \begin{aligned} & \text { whatever } M \text { is! } \\ & {\left[M_{33} \neq 0\right]}\end{aligned}$
LO picture can be translated into a more realistic model by replacing the zeros with small quantities
$U(1)_{\text {FN }}$ abelian flavour symmetry spontaneously broken by $\lambda=\langle\varphi\rangle / \wedge<1$
-- fix mass relations of $1^{\text {st }}$ and $2^{\text {nd }}$ generation
-- address DT splitting problem
-- check gauge coupling unification, p-decay,...
[Altarelli,F 9812475; Altarelli, F, Masina 0007254]

flavor puzzle made simpler in $S U(5)$?

suppose that y_{u}, y_{e}, y_{v} and M / \wedge are anarchical matrices [O (1) matrix elements] and that the observed hierarchy is due to some sort of wave function renormalization of matter multiplets

$$
\begin{array}{ccc}
10 & \rightarrow & F_{10} 10 \\
\overline{5} & \rightarrow & F_{\overline{5}} \overline{5}
\end{array} \quad F_{X}=\left(\begin{array}{ccc}
\varepsilon_{X}^{\prime} & 0 & 0 \\
0 & \varepsilon_{X} & 0 \\
0 & 0 & 1
\end{array}\right) \quad 1 \geq \varepsilon_{X} \geq \varepsilon_{X}^{\prime}
$$

F_{X} can arise from $U(1)_{F N}$ Symmetries, a $5^{\text {th }}$ Extra Dimension, Partial Compositness
large mixing in lepton sector suggests
hierarchy mostly due to $\mathrm{F}_{10} \quad F_{10} \approx \operatorname{diag}\left(\varepsilon_{10}^{\prime}, \varepsilon_{10}, 1\right)$

$$
\Upsilon_{u}=F_{10} y_{u} F_{10} \quad \Upsilon_{d}=F_{\overline{5}} y_{d} F_{10} \quad \Upsilon_{e}=F_{10} y_{d}^{T} F_{\overline{5}}
$$

in the extreme case $\varepsilon_{5}^{\prime}=1[$ ANARCHY] De $[$ Hall, Murayama, Weiner 1999

$$
\Rightarrow \quad m_{u}: m_{c}: m_{t} \approx m_{d}^{2}: m_{s}^{2}: m_{b}^{2} \approx m_{e}^{2}: m_{\mu}^{2}: m_{\tau}^{2} \quad \text { apprc } \quad \text { true }
$$

but Guido was not an extremist!

	$F N(\overline{5})$	λ
A	$(0,0,0)$	
$A_{\mu \tau}$	$(1,0,0)$	0.25
$P A_{\mu \tau}$	$(2,0,0)$	0.35
H	$(2,1,0)$	0.45

[Buchmuller, Domcke, Schmitz, 1111.387; Altarelli,F,Masina, Merlo 1207.0587; Bergstrom, Meloni, Merlo, 1403.4528]

$$
F\left(\overline{5}_{i}\right)=\lambda^{F N\left(\overline{5}_{i}\right)}
$$

$\sin ^{2} \boldsymbol{\vartheta}_{13} \approx \frac{\Delta m_{12}^{2}}{\Delta m_{13}^{2}}$
NH favoured
large number
of independent O (1) parameters
difficult to go beyond order-ofmagnitude predictions

Solar Neutrino Solutions < 2002

[Bahcall, Krastev, Smirnov 2001]

2002: the solar v problem is solved

 by 2002 the MSW SA solution was ruled out by the large SK statistics [E-spectrum, time variation]Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory
(Dated: 19 April 2002)

$$
\begin{array}{llr}
\nu_{e}+\mathrm{d} \rightarrow \mathrm{p}+\mathrm{p}+\mathrm{e}^{-} & (\mathrm{CC}), & \left.\phi_{e}=1.76_{-0.05}^{+0.05} \text { (stat.) }\right)_{-0.09}^{+0.09} \text { (syst.) } \\
\nu_{x}+\mathrm{d} \rightarrow \mathrm{p}+\mathrm{n}+\nu_{x} & \text { (NC) }, & \left.\phi_{\mu \tau}=3.41_{-0.45}^{+0.45} \text { (stat. }\right)_{-0.45}^{+0.48} \text { (syst.) } \\
\nu_{x}+\mathrm{e}^{-} \rightarrow \nu_{x}+e^{-} & \text {(ES). } & \text { (Eys. } \tag{ES}
\end{array}
$$

[MSW LA solution favoured, maximal ϑ_{12} mixing excluded]
First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance
(Dated: December 9, 2002)

KamLAND experiment exploits the low-energy electron anti-neutrinos ($\mathrm{E} \sim 3 \mathrm{MeV}$) produced by Japanese and Korean reactors at an average distance of $L \approx 180 \mathrm{Km}$ from the detector and is potentially sensitive to Δm^{2} down to $10^{-5} \mathrm{eV}^{2}$

$$
\begin{aligned}
& \text { MSW LA finally deternined } \\
& \sin ^{2} 2 \theta=0.833 \text { and } \Delta m^{2}=5.5 \times 10^{-5} \mathrm{eV}^{2}
\end{aligned}
$$

Tri-BiMaximal Mixing [TBM]

so "symmetric" and soon derived from A_{4} discrete symmetry
Ma, Rajasekaran 0106291, Babu, Ma, Valle 0206292; Hirsch, Romao, Skadauge, Valle,
Villanova del Moral 0312244, Ma 0404199, 0409075]
A_{4} was the upgrade of the $\mu-$ т parity symmetry [Grimus, Lavoura 0110041, 0305046] in the flavour basis, require m_{v} invariant under U

$$
U=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad U^{2}=1 \quad m_{v}=\left(\begin{array}{lll}
x & y & y \\
y & w & z \\
y & z & w
\end{array}\right) \leadsto \begin{aligned}
& \boldsymbol{\vartheta}_{13}=0 \quad \vartheta_{12} \text { undetermined } \\
& \boldsymbol{\vartheta}_{23}=\frac{\pi}{4}
\end{aligned}
$$

TBM is obtained when $x+y=w+z$ now m_{v} invariant also under S

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right)
$$

$$
U^{2}=S^{2}=1 \quad[S, U]=0
$$

$Z_{2} \times Z_{2}$ the most general symmetry of m_{v} if neutrinos are Majorana
the flavour basis can be guaranteed if ($m_{e}^{+} m_{e}$) is invariant under

$$
T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) \quad \omega=e^{i \frac{2 \pi}{3}}
$$

(S, T) generate A_{4}
(U can arise as an accidental symmetry) (S, T, U) generate S_{4}
geometrical picture of lepton mixing

[Kepler 1596 Mysterium Cosmographicum] very unfortunate Kepler's paper!

Tri-BiMaximal Mixing from A_{4}

we built a model with a number of nice features...
desired breaking $-G_{v}=\{U, S\} G_{e}=\{T\}$ - achieved dynamically G_{v} and G_{e} selected by the minimum of the energy density of the theory vacuum alignment at LO

$$
\left\langle\varphi_{T}\right\rangle=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) V_{T} \quad\left\langle\varphi_{S}\right\rangle=\left(\begin{array}{lll}
1 & 1
\end{array}\right) V_{S}
$$

LO lepton mixing angles - TBM - completely determined by the breaking
-- no ad-hoc relations among parameters required
-- formalism totally basis independent
μ-т parity symmetry naturally incorporated: U generator arises as an accidental symmetry
charged lepton mass hierarchy explained by $U(1)_{F N}$
(-> Z_{4} in a more minimal version) [Altarelli, Meloni 0905.0620]
study of NLO corrections induced by higher-dimensional operators,...

$$
U_{P M N S}=U_{T B}+O(\varepsilon) \quad \varepsilon=\frac{V_{T}}{\Lambda}, \frac{V_{S}}{\Lambda}
$$

expected size of ε fixed by the agreement $\vartheta_{12}^{T B} \approx \vartheta_{12}^{E X P}$
and some alarming predictions...
$\begin{cases}\vartheta_{23} \text { nearly maximal } & \text { still compatible with data } \\ \vartheta_{13}<0.05 & \text { wrong! }\end{cases}$
me: very much excited about this neat prediction!
Guido:

" Special models are those where some symmetry or dynamical feature assures in a natural way the near vanishing of θ_{13} and/or of $\theta_{23}-\pi / 4$. Normal models are conceptually more economical and much simpler to construct. We expect that experiment will eventually find that θ_{13} is not too small and that θ_{23} is sizably not maximal. " F [Altarelli, 2005]

2011/2012 breakthrough:
 $9_{13} \neq 0$

from LBL experiments searching for $v_{\mu} \rightarrow v_{e}$ conversion

T2K: muon neutrino beam produced at JPARC [Tokai]
$\mathrm{E}=0.6 \mathrm{GeV}$ and sent to
SK 295 Km apart [1106.2822]

MINOS: muon neutrino beam produced at Fermilab [$\mathrm{E}=3 \mathrm{GeV}$] sent to
Soudan Lab 735 Km apart [1108.0015]

$$
P\left(v_{\mu} \rightarrow v_{e}\right)=\sin ^{2} \vartheta_{23} \sin ^{2} 2 \vartheta_{13} \sin ^{2} \frac{\Delta m_{32}^{2} L}{4 E}+\ldots \quad \begin{aligned}
& \text { both experiments favor } \\
& \sin ^{2} \vartheta_{13} \sim \text { few } \%
\end{aligned}
$$

from SBL reactor experiments searching for anti- v_{e} disappearance
Double Chooz (far detector):
Daya Bay (near + far detectors):
RENO (near + far detectors):

$$
P\left(v_{e} \rightarrow v_{e}\right)=1-\sin ^{2} 2 \vartheta_{13} \sin ^{2} \frac{\Delta m_{32}^{2} L}{4 E}+\ldots
$$

$D C: \sin ^{2} 9_{13}=0.022 \pm 0.013$
DB: $\sin ^{2} 9_{13}=0.024 \pm 0.004$
$R: \sin ^{2} 9_{13}=0.029 \pm 0.006$

Which Direction?

Unfortunately $9_{13} \approx 0.15$ does not indicate any precise direction in the chart of possible models
$\vartheta_{13} \approx 0.15 \mathrm{rad}$ and the hint for non maximal ϑ_{23} have strengthened the case for anarchy, and for variants based on $U(1)_{\text {FN }}$ abelian continuous symmetries, Extra Dimensions,...

But discrete symmetries can also easily cope with $\vartheta_{13} \approx 0.15$
-- add "large" corrections $O\left(\vartheta_{13}\right) \approx 0.15$ to TBM pattern
-- change discrete group G_{f} and try to fit lepton mixing

n	G	GAP-Id	$\sin ^{2}\left(\theta_{12}\right)$	$\sin ^{2}\left(\theta_{13}\right)$	$\sin ^{2}\left(\theta_{23}\right)$
5	$\Delta\left(6 \cdot 10^{2}\right)$	$[600,179]$	0.3432	0.0288	0.3791
			0.3432	0.0288	0.6209

F.F., C. Hagedorn, R. de A.Toroop hep-ph/1107.3486 and hep-ph/1112.1340 Lam 1208.5527 and 1301.1736
Holthausen1, Lim and Lindner 1212.2411 Neder, King, Stuart 1305.3200 Hagedorn, Meroni, Vitale 1307.5308]
complete classification of $\left|U_{\text {PMNS }}\right|$ from any finite group available now! [Fonseca, Grimus 1405.3678]
-- change LO pattern

$$
U_{P M N S}^{0}=U_{B M}
$$

[G. Altarelli, F.F., L. Merlo and E. Stamou hep-ph/1205.4670; Altarelli, Machado, Meloni 1504.05514]
-- include CP in the SB pattern
[F. F, C. Hagedorn and R. Ziegler 1211.5560, 1303.7178
Ding,King,Luhn,Stuart 1303.6180 Ding, King, Stuart 1307.4212]
-- relax symmetry requirements
[He, Zee 2007 and 2011, Grimus, Lavoura 2008, Grimus, Lavoura, Singraber 2009, Albright, Rodejohann 2009, Antusch, King, Luhn, Spinrath 2011, King, Luhn 2011, Hernandez,Smirnov 1204.0445]

Conclusion

The main problem of discrete flavour groups is not so much that θ_{13} is large but that there is no hint from quarks for them

no clear role in the quark sector

[Guido, Corfu 2014] large hierarchies and small mixing angles seem not require discrete groups
extension to GUTs possible (many existence proofs) but rather complicated quark mass ratios and quark mixing angles from small parameters $\neq \varepsilon$ [U(1) $)_{\mathrm{FN}}$, Extra Dimensions,...]
one could have imagined that neutrinos would bring a decisive boost towards the formulation of a comprehensive understanding of fermion masses and mixings. In reality it is frustrating that no real illumination was sparked on the problem of flavor. We can reproduce in many different ways the observations, in a wide range that goes from anarchy to discrete flavor symmetries but we have not yet been able to single out a unique and convincing baseline for the understanding of fermion masses and mixings. In spite of many interesting ideas and the formulation of many elegant models the mysteries of the flavor structure of the three generations of fermions have not been much unveiled.
[Guido Altarelli, "Status of Neutrino Mass and Mixing" 1404.3859]

NEUTRINO MASSES: A THEORETICAL INTRODUCTION

Guido Altarelli
CERN - Geneva

Content

| Introduction
? Dirac and Majorana Mass Terms for Neutrinos
3. The See-Saw Mechamsm
4. Neutrino Masses and GUTS
5. Phenomenological Hints on Neutrino Masses
6. Conclusion and Outlook
"Neutrino Telescopes"
Venice, Ataly, February 1994

Backup slides

Plan of the talk

1969-1997:
-- neutrino timeline

1998-2005:
-- struggling with textures
-- abelian flavour symmetries
-- GUTs
2005-2011:
-- discrete flavour symmetries
2011-2013:
-- new directions

1998: convincing evidence of neutrino oscillations [SuperKamiokande]

2002: solar neutrino problem solved [SNO CC and NC, Kamland]

2011: T2K, Minos, Daya Bay, RENO measure ϑ_{13}

Solar Neutrino Timeline

$1969 \quad 1^{\text {st }}$ detection of solar neutrinos by R. Davis at the Homestake mine

$$
v_{e}+{ }^{37} \mathrm{Cl} \rightarrow e^{-}+{ }^{37} \mathrm{Ar}
$$

solar v problem starts, no other solar v experiments for 20 yr !
1969 solution in terms of $v_{e} \rightarrow v_{\mu}$ oscillations by Gribov and Pontecorvo
1974 GUT proposed by Georgi and Glashow
1977 see-saw mechanism for neutrino masses [Minkowski, Gell-Mann, Ramond, Slanski and Yanagida]
1978 Wolfenstein, Mikheyev, Smirnov (MSW effect)
1986 sizeable solar v_{e} conversion possible with small mixing angle
1987 detection of neutrinos from SN1987A by Kamiokande, IMB, Baksan. Kamiokande lower the E threshold below solar v energies $\sim 10 \mathrm{MeV}$
$1989 \quad N_{v}=3$ from LEP
90s
SAGE, GALLEX, GNO $\quad v_{e}+{ }^{71} G a \rightarrow e^{-}+{ }^{71} G e$ confirm the solar v problem in the low-energy region of v spectrum
$1994 \quad m_{v_{e}}<2.2 \mathrm{eV} \quad$ [Troitsk]

Atmospheric Neutrino Timeline

1978 first measurement of

$$
\Phi_{t h}\left(v_{\mu}\right) / \Phi_{\exp }\left(v_{\mu}\right)=1.6 \pm 0.4
$$

Crouch, M.F., Landecker, P.B., Lathrop, J.F., Reines, F., Sandie, W.G., Sobel, H.W. et al. (1978) Cosmicray muon fluxes deep underground: Intensity vs depth, and the neutrino-induced component. Phys. Rev. D 18, 2239-2252.

80s several proton decay experiments started $M=100-3000$ tons atmospheric v, serious background for p-decay searches, are carefully studied
Kamiokande, IMB, Soudan $\quad R=(\mu / e)_{\text {data }} /(\mu / e)_{M C} \approx 0.6$
atmospheric v problem

Prejudices < 1997

solar v problem:
several solutions possible
-- SSM not correct
-- resonant spin-flavour precession of v
-- FCNC solution
-- MSW SA attractive
atmospheric v problem:
it will fade away since it requires a large mixing angle

One can in principle explain the data if one assumes neutrino oscillations,

However, at that time, it was commonly believed that the mixing angles between neutrinos must be small, since the corresponding mixing angles between the quarks are known to be small. Therefore, the result and the oscillation interpretation were not accepted by physicists, since they implied that the mixing angle between neutrinos is large.
[T. Kajita 2010]

1997-1998 turnpoint

1997 solar sound speed from helioseismology compared with predictions of SSM (test T-profile in solar interior)

SSM reliable

Bahcall, Pinsonneault, Sarbani Basu, Christensen-Dalsgaard Phys.Rev.Lett. 78 (1997) 171

FIG. 1. Comparison of sound speeds predicted by different standard solar models with the sound speeds measured by helioseismology. There are no free parameters in the models;

1996 Superkamiokande starts, atmospheric v data shown at Neutrino '98

Fig. 14. Zenith angle distributions for multi-GeV atmospheric neutrino events reported at the Nuetrino' 98 conference based on 535 days exposure of the Super-Kamiokande detector. The left and right panels show the distributions for e-like and μ-like events, respectively. Θ shows the zenith angle, and $\cos \Theta=1$ and -1 represent events whose direction is vertically downward-going and upward-going, respectively.
-- zenith angular distributions of atmospheric v
-- oscillation solution becomes compelling
-- determination of

$$
\left(\Delta m_{a t m}^{2}, \sin ^{2} 2 \vartheta_{23}\right)
$$

$$
\approx 1 \text {-> maximal mixin }
$$

Fig. 15. Allowed parameter regions of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations from Super-Kamiokande and Kamiokande shown at the Neutrino'98 conference. ${ }^{7}$ Contours are obtained based on; (1) contained events from Super-Kamiokande, (2) contained events from Kamiokande, (3) upward through-going events from Super-Kamiokande, (4) upward through-going events om Kamiokande and (5) stop/through ratio analysis for

Conclusion

From the theoretical side, for v masses and mixings we do not have so far a compelling theoretical picture and many possibilities are still open.

Actually, also for quarks and charged leptons we do not have a theory of flavour that explains the observed spectrum, mixings and CP violation.

Yet in spite of impressive progress important experimental open questions remain:
Absolute scale of m^{2} ? Inverse or normal hierarchy?
CP violation? Flavour symmetry? Sterile v's? DM?..

Thus v's are interesting because they can provide new clues on the flavour problem
[Guido, Corfu 2014]
anything special from data, requiring a symmetry?
$1 \quad \vartheta_{23}$ maximal ?
$2 \quad \delta_{C P}=-\pi / 2$?
$3 U_{\text {PMNS }}$ close to $T B(B M, \ldots)$?

3 examples from a longer list...

1 today most precise single determination of ϑ_{23} is from T2K $\left(P_{\mu \mu}\right)$ [1403.1532]
$\sin ^{2} \vartheta_{23}=\left\{\begin{array}{lll}0.514_{-0.056}^{+0.055} & (\mathrm{NH}) & \text { well compatible with } \\ 0.511_{-0.055}^{+0.055} & \text { (IH) } & \vartheta_{23} \text { maximal }\end{array}\right.$
global fits hint at ϑ_{23} non-maximal main effect: interplay between SBL reactor experiments ($P_{e e}$) and LBL experiments searching ($P_{\mu e}$)
$P_{e e}=1-\sin ^{2} 2 \vartheta_{13} \sin ^{2} \frac{\Delta m_{32}^{2} L}{4 E}+\ldots$
$P_{\mu e}=\sin ^{2} \vartheta_{23} \sin ^{2} 2 \vartheta_{13} \sin ^{2} \frac{\Delta m_{32}^{2} L}{4 E}+\ldots$

$[1]$ NH $\|$	$\sin ^{2} \vartheta_{23}=\left\{\begin{array}{cl} 0.567_{-0.128}^{+0.022} & (\mathrm{NH}) \\ 0.573_{-0.043}^{+0.025} & \text { (IH) } \end{array}\right.$
	global fit: [1] Capozzi, Fogli, Lisi, Marrone Montanino, Palazzo 1312.2878 [2] Forero, Tortola, Valle 1405.7540
$\begin{array}{lll} 0.4 & 0.5 & 0.6 \\ \sin ^{2} \theta_{23} & 0.7 \\ \hline \end{array}$	

a small change of $P_{e e}$ and/or $P_{\mu e}$ within about 1σ can bring back ϑ_{23} to maximal
difficult to improve ϑ_{23} from $P_{\mu \mu}$
$\delta \vartheta_{23} \approx \sqrt{\delta P_{\mu \mu}} / 2 \quad \delta P_{\mu \mu} \approx 0.01$ $\delta \vartheta_{23} \approx 0.05 \mathrm{rad}\left(2.9^{0}\right)$
ϑ_{23} nearly maximal would be a crucial piece of information
ϑ_{23} cannot be made maximal by RGE evolution
[barring tuning of b.c. and/or thresold corrections]
when a flavour symmetry is present, ϑ_{23} is determined entirely by breaking effects [no maximal ϑ_{23} from an exact symmetry] broken abelian symmetries do not work [not a theorem but no counterexamples]
we are left with broken non-abelian symmetries

$$
\delta_{C P}=-\pi / 2 ?
$$

add large corrections $O\left(\Im_{13}\right) \approx 0.2$

- predictability is lost since in general correction terms are many
- new dangerous sources of FC/CPV if NP is at the TeV scale
relax symmetry requirements [Hernandez,Smirnov 1204.0445]

$$
\begin{aligned}
& G_{e} \text { as before } \\
& G_{v}=Z_{2}
\end{aligned}
$$

2 predictions:
2 combinations of $\boldsymbol{\vartheta}_{12}^{0} \quad \boldsymbol{\vartheta}_{23}^{0} \quad \boldsymbol{\vartheta}_{13}^{0} \quad \boldsymbol{\delta}_{C P}$
two deformations of TB, called Trimaximal [TM] mixing

TM 1
$U^{0}=U_{T B} \times\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & e^{i \delta} \sin \alpha \\ 0 & -e^{-i \delta} \sin \alpha & \cos \alpha\end{array}\right)$

TM

leads to testable sum rules
$\sin ^{2} \vartheta_{12}=\frac{1}{3}-\frac{2}{3} \sin ^{2} \vartheta_{13}+O\left(\sin ^{4} \vartheta_{13}\right)$

$$
\sin ^{2} \vartheta_{12}=\frac{1}{3}+\frac{1}{3} \sin ^{2} \vartheta_{13}+O\left(\sin ^{4} \vartheta_{13}\right)
$$

$\sin ^{2} \vartheta_{23}=\frac{1}{2}-\sqrt{2} \sin \vartheta_{13} \cos \delta_{C P}+O\left(\sin ^{2} \vartheta_{13}\right) \sin ^{2} \vartheta_{23}=\frac{1}{2}+\frac{1}{\sqrt{2}} \sin \vartheta_{13} \cos \delta_{C P}+O\left(\sin ^{2} \vartheta_{13}\right)$
[He, Zee 2007 and 2011, Grimus, Lavoura 2008, Grimus, Lavoura, Singraber 2009, Albright, Rodejohann 2009, Antusch, King, Luhn, Spinrath 2011, King, Luhn 2011, G. Altarelli, F.F., L. Merlo and E. Stamou hep-ph/1205.4670]
deviation from TB is linear in α for $\sin ^{2} \theta_{23}$, whereas is quadratic for $\sin ^{2} \theta_{12}$, the best measured angle
sum rules can be tested by measuring $\delta_{C P}$ and improving on $\sin ^{2} 9_{23}$

3 change discrete group G_{f}

- solutions exist special forms of TM_{2}

G_{f}	$\Delta(96)$	$\Delta(384)$	$\Delta(600)$
α	$\pm \pi / 12$	$\pm \pi / 24$	$\pm \pi / 15$
$\sin ^{2} \vartheta_{13}^{0}$	0.045	0.011	0.029

$\delta^{0}=0, \pi$ (no CP violation) and α "quantized" by group theory complete classification of $\left|U_{\text {PMNS }}\right|$ from any finite group available now!
$U^{0}=U_{T B} \times\left(\begin{array}{ccc}\cos \alpha & 0 & e^{i \delta} \sin \alpha \\ 0 & 1 & 0 \\ -e^{-i \delta} \sin \alpha & 0 & \cos \alpha\end{array}\right)$
F.F., C. Hagedorn, R. de A.Toroop
hep-ph/1107.3486 and hep-ph/1112.1340
Lam 1208.5527 and 1301.1736
Holthausen1, Lim and Lindner 1212.2411
Neder, King, Stuart 1305.3200
Hagedorn, Meroni, Vitale 1307.5308]
[Fonseca, Grimus 1405.3678]

4 change LO pattern

$$
U_{P M N S}^{0}=U_{B M}
$$

corrected by U_{12}

$$
\sin ^{2} \vartheta_{12}=\frac{1}{2}+\sin \vartheta_{13} \cos \delta_{C P}+O\left(\sin ^{2} \vartheta_{13}\right)
$$

5 include $C P$ in the SB pattern

$$
G_{C P}=G_{f} \times C P \begin{aligned}
& \text { [F. F, } C . \text { Hagedorn and } \\
& \text { R. Ziegler 1211.5560, 1303.7178 } \\
& \text { Ding, King, Luhn,Stuart 1303.6180 } \\
& \text { Ding, King, Stuart 1307.4212] }
\end{aligned}
$$

mixing angles and $C P$ violating phases
$\left(\vartheta_{12}^{0}, \vartheta_{23}^{0}, \vartheta_{13}^{0}, \delta^{0}, \alpha^{0}, \beta^{0}\right)$
predicted in terms of a single real parameter $0 \leq 9 \leq \pi$
2 examples with $G_{f}=S_{4} \quad G_{e}=Z_{3}$

$$
\sin ^{2} \vartheta_{23}^{0}=\frac{1}{2}\left|\sin \delta^{0}\right|=1 \begin{aligned}
& \sin \alpha^{0}=0 \\
& \sin \beta^{0}=0
\end{aligned}
$$

2011/2012 breakthrough

-- LBL experiments searching for $v_{\mu}->v_{e}$ conversion
-- SBL reactor experiments searching for anti- v_{e} disappearance

sterile neutrinos coming back
1 reactor anomaly (anti-v disappearance)
re-evaluation of reactor anti- v_{e} flux: new estimate 3.5% higher than old one

supported by the Gallium anomaly v_{e} flux measured from high intensity radioactive sources in Gallex, Sage exp
$v_{e}+{ }^{71} \mathrm{Ga} \rightarrow{ }^{71} \mathrm{Ge}+e^{-} \quad \begin{aligned} & \quad \text { error on } \sigma \text { or on } \mathrm{Ge} \\ & \text { extraction efficiency] }\end{aligned}$
most recent cosmological limits
[depending on assumed cosmological model, data set included,...]
relativistic degrees of freedom at recombination epoch

$$
N_{e f f}=3.30 \pm 0.27
$$

[Planck, WMAP, BAO, high multiple CMB data]
fully thermalized non relativistic v

$$
\begin{aligned}
& N_{e f f}<3.80 \quad(95 \% C L) \\
& m_{s}<0.42 \mathrm{eV} \quad(95 \% C L)
\end{aligned}
$$

2 long-standing claim
evidence for $v_{\mu} \rightarrow v_{e}$ appearance in accelerator experiments

\exp		$E(\mathrm{MeV})$	$L(\mathrm{~m})$
LSND	$\bar{v}_{\mu} \rightarrow \bar{v}_{e}$	$10 \div 50$	30
MiniBoone	$v_{\mu} \rightarrow v_{e}$	$300 \div 3000$	541
	$\bar{v}_{\mu} \rightarrow \bar{v}_{e}$		

3.8σ
3.8 σ [signal from low-energy region]
parameter space limited by negative results from Karmen and ICARUS

$$
\begin{aligned}
& \vartheta_{e \mu} \approx 0.035 \\
& \Delta m^{2} \approx 0.5 e V^{2}
\end{aligned}
$$

interpretation in 3+1 scheme: inconsistent
$\sin ^{2}(29)$ (more than 1s disfavored by cosmology)

$$
\underbrace{\boldsymbol{\vartheta}_{e \mu}}_{\begin{array}{l}
0.035 \\
\text { predicted suppression in } v_{\mu} \text { disappearance } \\
\text { experiments: undetected }
\end{array}} \approx \underbrace{\boldsymbol{\vartheta}_{e s}}_{\boldsymbol{\vartheta}_{e s}} \times \vartheta_{\mu s} \approx 0.2
$$

by ignoring LSND/Miniboone data the reactor anomaly can be accommodated by $m_{s} \geq 1 \mathrm{eV}$ and $\vartheta_{e s} \approx 0.2$
[not suitable for WDM, more on this later]

A_{4} as a leftover of Poincare symmetry in $D>4$
D dimensional
Poincare symmetry:
D-translations \times SO(1,D-1)
usually broken by
compactification down to 4 dimensions: 4-translations $\times \operatorname{SO}(1,3) \times$...
a discrete subgroup of the (D-4) euclidean group $=$ translations \times rotations can survive in specific geometries

Example: $D=6$
2 dimensions compactified on T^{2} / Z_{2}

four fixed points

\square compact space is a regular tetrahedron invariant under

[translation]
[rotation by 120°]
[subgroup of 2 dim Euclidean group $=2$-translations $\times S O(2)$]

