

Investigation of the low-energy kaons hadronic interactions in light nuclei by AMADEUS

Kristian Piscicchia*

Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi INFN, Laboratori Nazionali di Frascati

on behalf of the AMADEUS collaboration

ISU 2015 "Quest for visible and invisible strange stuff in the Universe" LNF, INFN, Frascati 27/11/2015

Study of Strongly Interacting Matter

*kristian.piscicchia@lnf.infn.it

lstituto Nazionale di Fisica Nucleare

INFN

Why low-energy kaons hadronic interactions study?

 K^{-}

 Strange quarks are intermediate between "light" and "heavy": interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD

- BUT chiral perturbation theory not applicable

 high-precision antikaon-nucleon threshold physics test ground for the different theoretical approaches

exploiting the attractive low energy K N interaction

Why low-energy kaons hadronic interactions?

Framework: Low-Energy QCD with Strange Quarks

CHIRAL PERTURBATION THEORY Interacting systems of NAMBU-GOLDSTONE BOSONS (pions, kaons) coupled to BARYONS

$$\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_B(\Phi, \Psi_B)$$

works well for low-energy pion-pion and pion-nucleon interactions

... but NOT for systems with strangeness S = -1

BECOUSE Λ(1405) just below K⁻N threshold (1432 MeV)

 K^{-}

Solutions:

• Non-perturbative Coupled Channels approach based on Chiral SU(3) Dynamics

phenomenological KN and NN potentials

The scientific goal of AMADEUS

Low energy QCD in strangeness sector is still waiting for experimental conclusive constrains on:

 K^{-}

- 1) **K-N potential** \rightarrow how deep can an antikaon be bound in a nucleus?
 - U_{KN} strongly affects the position of the $\Lambda(1405)$ state \rightarrow we investigate it through $(\Sigma - \pi)^0$ decay --- $\Upsilon \pi$ CORRELATION
 - if U_{KN} is strongly attractive then possible K⁻ multi-N bound states \rightarrow we investigate through (Λ/Σ -N) decay --- Y N CORRELATION
- 2) Y-N potential → extremely poor experimental information from scattering data
 - U_{YN} determines the strength of the final state YN (elastic & inelastic) scattering in nuclear environment → could be tested by Y N CORRELATION

AMADEUS & DAΦNE

^{K⁻} DAΦNE at LNF, INFN

Double ring e⁺e⁻ collider working in C. M. energy of ϕ , producing $\approx 600 \text{ K}^+\text{K}^-/\text{s}$ $\phi \rightarrow \text{K}^+\text{K}^-$ (BR = (49.2 ± 0.6)%)

- low momentum Kaons
 ≈ 127 Mev/c
- back to back K⁺K⁻ topology

KLOE

• 96% acceptance,

optimized in the energy range of all charged particles involved
good performance in detecting photons (and neutrons checked by kloNe group (M. Anelli et al., Nucl Inst. Meth. A 581, 368 (2007)))

from the materials of the KLOE detector DC gas (90% He, 10% C_4H_{10}) & DC wall (C + H)

<u>AT-REST</u> (K⁻ absorbed from atomic orbit) or <u>IN-FLIGHT</u> ($p_{K} \sim 100 \text{MeV}$)

K

Advantage: excellent resolution .. $\sigma_{pA} = 0.49 \pm 0.01$ MeV/c in DC gas $\sigma_{m\gamma\gamma} = 18.3 \pm 0.6$ MeV/c²

Disadvantage: Not dedicated target → different nuclei contamination → complex interpretation .. but → new features .. K⁻ in flight absorption.

IN-FLIGHT

AT-REST K⁻ absorbed from atomic orbit (p_K~ 0 MeV)

from the materials of the KLOE detector DC gas (90% He, 10% C_4H_{10}) & DC wall (C + H)

 \mathbf{K}

<u>AT-REST</u> (K⁻ absorbed from atomic orbit) or <u>IN-FLIGHT</u> (p_x~100MeV)

from the materials of the KLOE detector DC gas (90% He, 10% C_4H_{10}) & DC wall (C + H)

 \mathbf{K}

<u>AT-REST</u> (K⁻ absorbed from atomic orbit) or <u>IN-FLIGHT</u> $(p_{\kappa} \sim 100 \text{MeV})$

PART 1

 \mathbf{K}^{-}

Y π CORRELATION

resonant VS non-resonant production study

$\Lambda(1405)$.. resonance or/and bound state?

EXAMPLE 1 Chiral unitary models: $\Lambda(1405)$ is an I = 0 quasibound state emerging from the coupling between the $\overline{K}N$ and the $\Sigma\pi$ channels. Two poles in the neighborhood of the $\Lambda(1405)$:

Jido D., Oller J. A., Oset E., Ramos A., Meissner U.-G., Nucl. Phys. A 725, 181 (2003), T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008), A. Cieply, J. Smejkal, Few Body Syst. 54 (2013) 1183

High mass \rightarrow KN

Low mass $\rightarrow \Sigma \pi \rightarrow$ line-shape depends on

 Akaishi-Esmaili-Yamazaki phenomenological potential

Phys. Lett. B 686 (2010) 23-28 Confirmation of single pole ansatz?

production mechanism

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

$\Lambda(1405)$.. resonance or/and bound state?

EXAMPLE 1 Chiral unitary models: $\Lambda(1405)$ is an I = 0 quasibound state emerging from the coupling between the $\overline{K}N$ and the $\Sigma\pi$ channels. Two poles in the neighborhood of the $\Lambda(1405)$:

Jido D., Oller J. A., Oset E., Ramos A., Meissner U.-G., Nucl. Phys. A 725, 181 (2003), T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008), A. Cieply, J. Smejkal, Few Body Syst. 54 (2013) 1183

High mass \rightarrow KN

Low mass $\rightarrow \Sigma \pi \rightarrow$ line-shape depends on

production mechanism

 Akaishi-Esmaili-Yamazaki phenomenological potential

Phys. Lett. B 686 (2010) 23-28 Confirmation of single pole ansatz?

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

"A study of K⁻ ⁴He \rightarrow ($\Sigma \pm \pi \mp$) + ³H using slow instead of stopping K⁻ would be very useful in eliminating some of the uncertainties in interpretation"

D. Riley, et al. Phys. Rev. D11 (1975) 3065

CUT AT THE ENERGY LIMIT AT-REST ?

NON RESONANT SHAPE?

Scientific case of the $\Lambda(1405)$

• Chiral unitary models: $\Lambda(1405)$ is an I = 0 quasibound state emerging from the coupling between the KN and the $\Sigma\pi$ channels. Two poles in the neighborhood of the $\Lambda(1405)$:

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

Scientific case of the $\Lambda(1405)$

 $\Lambda(1405)$ is I = 0

 \mathbf{K}

 $\Sigma^0 \pi^0$ (I =0) golden decay channel

(free from Σ(1385) background I=1)

The $\Sigma^0 \pi^0$ spectrum was only observed in 3 experiments ... with different line-shapes !

Ongoing fit of $\Sigma^0 \pi^0$

8 component fit :

• Resonant component K⁻C at-rest/in-flight. (M, Γ) = (1405 ÷ 1430, 5 ÷ 52)

better description of the resonance lineshape is needed, work in progress with the Prague group

- Non resonant $\Sigma^0 \pi^0$ K⁻ H production at-rest/in-flight
- Non resonant Σ⁰π⁰ K⁻ C production at-rest/in-flight
- $\Lambda \pi^0$ background ($\Sigma(1385)$ + I.C.)

 \mathbf{K}

• non resonant misidentification (*n.r.m.*) background

$K^- p \rightarrow \Sigma^0 \pi^0$ cross section measurement at p_K~100 MeV/c

- $K^- p \rightarrow \Sigma^0 \pi^0$ cross section measurement at or below 100 MeV/c missing

existing data at (120, 160, ..) MeV/c with big relative errors (about 50% & 120 MeV/c)

Simultaneous fit of

- $\Sigma 0$ - $\pi 0$ momentum
- $\Sigma 0$ - $\pi 0$ invariant mass
- $\Sigma 0$ - $\pi 0$ angular correlation

With 6 components:

- K- H capture at-rest + in-flight → kinematics is closed
- K- 4He capture at-rest + in-flight $(l_{\kappa} = 1)$
- K- 12C capture at-rest + in-flight ($l_{\kappa} = 2$, kaon captured on valence proton)

 $A_{K-p\to\Sigma0\pi0}(\mathbf{p}_{\Sigma0\pi0}) = \int d\mathbf{k}_{\Sigma0\pi0} \, d\mathbf{p}_R \, \phi_K(\mathbf{p}_K) \psi_p(\mathbf{k}_{pR}) \, t(\mathbf{k}_{\Sigma0\pi0}, \mathbf{k}'_{\Sigma0\pi0}, E_{\Sigma0\pi0}) \, \delta^3(\mathbf{p}_R - \mathbf{p}'_R).$

Each process considered non-resonant (transition no momentum dependent)

Simultaneous fit of

With 6 components:

- $\Sigma 0$ - $\pi 0$ momentum
- $\Sigma 0$ - $\pi 0$ invariant mass
- $\Sigma 0$ - $\pi 0$ angular correlation

- K- H capture at-rest + in-flight

- K- 4He capture at-rest + in-flight
- K- 12C capture at-rest + in-flight

$\Sigma^+\pi^-$ correlation

 $K^-p \rightarrow \Sigma^+\pi^-$ detected via: $(p\pi^0) \pi^-$

Κ

Possibility to disentangle: Hydrogen, in-flight, at-rest, K⁻ capture

$\Sigma^+\pi^-$ correlation

 $K^-p \rightarrow \Sigma^+\pi^-$ detected via: $(p\pi^0) \pi^-$

K

Possibility to <u>disentangle: Hydrogen</u>, <u>in-flight</u>, <u>at-rest</u>, K⁻ capture

if resonant production contribution is important a high mass component appears!

Resonant VS non-resonant

 \mathbf{K}^{-}

$K^- N \rightarrow (Y^* ?) \rightarrow Y π$ how much comes from resonance ?

Non resonant transition amplitude:
Never measured before below threshold

- few, old theoretical calculations (Nucl. Phys. B179 (1981) 33-48)

Resonant VS non-resonant

Investigated using: $\mathbf{K}^{-}''\mathbf{n}'' \rightarrow \Lambda \pi^{-}$ direct formation in ⁴He

In collaboration with Prof. S. Wycech

Channel: K⁻ ⁴He $\rightarrow \Lambda \pi^{-}$ ³He ... <u>the idea</u>

Bubble chamber experiments exhibit two components:

K

Low momentum $\Lambda \pi^-$ pair \rightarrow S-wave, I=1, **non-resonant** transition amplitude.

• High momentum $\Lambda \pi^-$ pair \rightarrow P-wave resonant formation ?

Channel: $K^{-4}He \rightarrow \Lambda \pi^{-3}He \dots \underline{the idea}_{K^{-1}}$

K⁻(s=0) ⁴He(s=0) n(s=1/2) Σ^{*-} (s=3/2) → resonance <u>p-wave</u> only

atomic s-state capture:

• $(K^{-4}He \rightarrow \Lambda \pi^{-3}He)$ absorptions from (n s) - atomic states dominate \rightarrow consistent with ⁴He bubble chamber data (Fetkovich, Riley interpreted by Uretsky, Wienke)

Coordinates recupling enables for P-wave resonance formation

Channel: K⁻ ⁴He $\rightarrow \Lambda \pi^{-}$ ³He ... <u>the strategy</u>

• To determine *for the first time* the ratio resonant/non-res

33 MeV below threshold

 $|f^{N-R}_{\Lambda\pi}|$ given the fairly well known $|f^{\Sigma*}_{\Lambda\pi}|$

Theoretical paper under finalization

Channel: K⁻ ⁴He $\rightarrow \Lambda \pi^{-}$ ³He ... <u>calculated reactions</u>

At-rest : S-wave non-Res / P-wave $\Sigma(1385)$ Res

 $K^{-4}He \rightarrow \Lambda \pi^{-3}He$

K

In-flight: S-wave non-Res / P-wave $\Sigma(1385)$ Res

Direct $\Lambda \pi^-$ production .. SIGNAL

Channel: K⁻ ⁴He $\rightarrow \Lambda \pi^{-}$ ³He ... <u>calculated reactions</u>

 $Λ π^-$ production $Σ^0 p$ conversion $Σ^0 n$ conversion $Σ^+ n$ conversion

K⁻ ⁴He → $\Lambda \pi^{-3}$ He preliminary fit

K⁻ ⁴He → $\Lambda \pi^{-3}$ He preliminary fit

K⁻ ⁴He → $\Lambda \pi^{-3}$ He preliminary fit

Λπ0 data from J. Kim, Nucl. Phys. B 129 (1977) 1.

Conclusions part 1

- *m*_{Σπ} spectra show a high invariant mass component → associated to in-flight K⁻ capture
- PRELIMINARY $\Lambda \pi^{-}$ first measurement of N-R (I=1)_{$\Lambda \pi$} amplitude below threshold

Next steps ...

• Analysis is ongoing for $\Sigma^0 \pi^- \rightarrow \text{extraction of } |f^{N-R}_{\Sigma^0 \pi^-} (I=1)|$

 Similar description of Σ⁺π⁻ and Σ⁻π⁺ production → extraction of |f^{N-R}_{Σ+π}| and |f^{N-R}_{Σ-π+}|, a comparison of these could give an estimate of
 |f^{N-R}_{Σ+π}(I=0) + f^{N-R}_{Σ+π}(I=1)| against |f^{N-R}_{Σ+π}(I=0) - f^{N-R}_{Σ+π}(I=1)|

PART 2

 \mathbf{K}^{-}

Single & multi – nucleon K⁻ absorption

kaonic nuclear clusters

investigation through

Λ – d,t correlation

Ap correlation study .. PART 2a

How deeply can an Antikaon be bound to a nucleus?

Possible bound states: K⁻pp – K⁻ppn

 Λ/Σ p Λd predicted due to the strong KN interaction in the I=0 channel. (Wycech (1986) - Akaishi & Yamazaki (2002))

Different theoretical approaches:

 K^{-}

- Few-body calculations solving Faddeev equations
- Variational calculations with phenomenological KN potential
- KN effective interactions based on Chiral SU(3) dynamics

K⁻pp bound state

	Theoretical prediction	B.E (MeV)	Γ (MeV)	
PRC76, 045201 (2002)	T. Yamazaki and Y. Akaishi	48	61	
arXiv:0512037v2[nucl-th]	A. N. Ivanov, P. Kienle, J. Marton, E. Widman	118	58	
PRC76, 044004 (2007)	N. V. Shevchenko, A. Gal, J. Mares, J. Revai	50-70	-100	
PRC76, 035203 (2007)	Y. Ikeda and T. Sato	60-95	45-80	
NPA804, 197 (2008)	A. Dote, T. Hyodo, W. Weise	20±3	40~70	
PRC80, 045207 (2009)	S. Wycech and A. M. Green	56.5-78	39-60	
PRL 8712, 132-137 (2012)	Barnea et al.	15.7	41.2	

Ad search for a K-ppn cluster

- 572 Lambda-deuteron events in DC gas

 \mathbf{K}

- Structures at high Mass correlated with back-to-back events

Ad search for a K-ppn cluster

- Fit to be performed

 \mathbf{K}

- Possibility to extract information on the cusp effect

At correlation study

Available data:

in Helium :

 K^{-}

- bubble chamber experiment [M.Roosen, J.H. Wickens, II Nuovo Cimento 66, (1981), 101] K⁻ stopped in liquid helium, Λ dn/t search. 3 events compatible with the Λ t kinematics were found

BR(K⁻⁴He \rightarrow Λ t) = (3 ± 2) × 10⁻⁴/K_{stop}

global, no 4NA

Solid targets

- FINUDA [Phys.Lett. B669 (2008) 229] (40 events in different solid targets)

At correlation studies in ⁴He: mass, momentum and angle simulataneous ^{K-} fit

- data

--- carbon data from DC wall

--- 4NA K⁻⁴He \rightarrow At in flight MC --- 4NA K⁻⁴He \rightarrow At at rest MC

 $\begin{array}{rrrr} & --- & 4NA \ K^{-4}He \rightarrow \Sigma^0 t & , & \Sigma^0 & \rightarrow \Lambda\gamma \ MC \\ & --- & 4NA \ K^{-4}He \rightarrow \Sigma^0 t & , & \Sigma^0 & \rightarrow \Lambda\gamma \ MC \end{array}$

At correlation studies in ⁴He: preliminary mass and angle simulataneous Kfit Preliminary

Conclusions part 2

 $BR(K^{-4}He(4NA) \rightarrow \Lambda t) < 1.1 \times 10^{-4}/K_{stop}$

 K^{-}

4 NA cross section & 100MeV measured for the first time

 $σ(100 \text{ MeV/c}) (K^{-4}\text{He}(4NA) → Λt) =$ (0.41 ± 0.13 (stat) +0.01 -0.02 (sys)) mb

Paper in preparation

