

One-loop predictions

for the pion VFF

in resonance chiral theory

UAB Universitat Autònoma de Barcelona

J.J. Sanz-Cillero (UAB – IFAE)

[Forthcoming; in collaboration with A. Pich and I. Rosell]

J. J. Sanz Cillero

Outline:

• Framework for the $\pi\pi$ -VFF:

Resonance chiral theory and $1/N_c$ expansion

• ImF(s) at s $\rightarrow\infty$

- Full F(s) at $s \rightarrow \infty$
- F(s) at low energies
- Numerical estimates and conclusions

ππ-VFF, RχT

and the 1/N_c expansion

J. J. Sanz Cillero

The amplitude: $\pi\pi$ vector form-factor

with $q = p_{\pi^+} + p_{\pi^-}$

•Very good measurements

•Well dominated by the vector

J. J. Sanz Cillero

 \rightarrow Test for our hadronic theory

Ingredients of

a chiral theory for resonances ($R\chi T$)

[Ecker et al.'89] ... [Cirigliano et al.'06] ...

- Large $N_c \rightarrow U(n_f)$ multiplets
- 1/N_c supression of meson loops
- Goldstones from $S\chi SB(\pi, K, \eta_8, \eta_1)$
- SRA: First resonance multiplets (V,A,S,P)
- Chiral symmetry invariance
- Just O(p²) operators ?←High energy conditions [Trnka,SC'09]

? ← *Field Redefinitions* [Xiao, SC'07]

<u>No restriction on the number of R fields:</u> $\mathcal{L}_{R\chi T} = \mathcal{L}^{GB} + \sum_{R} \mathcal{L}_{R} + \sum_{R,R'} \mathcal{L}_{RR'} + \sum_{R,R',R''} \mathcal{L}_{RR'R''} + \dots$

One-loop predictions for the $\pi\pi$ -VFF in $R\chi T$

[Cirigliano et al.'06]

[Pich,Rosell & SC'08]

$$\mathcal{L}_{VA} = i\lambda_{2}^{VA} \langle [V^{\mu\nu}, A_{\nu\alpha}]h^{\alpha}_{\mu} \rangle + i\lambda_{3}^{VA} \langle [\nabla^{\mu}V_{\mu\nu}, A^{\nu\alpha}]u_{\alpha} + i\lambda_{4}^{VA} \langle [\nabla_{\alpha}V_{\mu\nu}, A^{\alpha\nu}]u^{\mu} \rangle + i\lambda_{5}^{VA} \langle [\nabla_{\alpha}V_{\mu\nu}, A^{\mu\nu}]u^{\alpha}$$
$$\mathcal{L}_{SA} = \lambda_{1}^{SA} \langle \{\nabla_{\mu}S, A^{\mu\nu}\}u_{\nu} \rangle$$
$$\mathcal{L}_{PV} = i\lambda_{1}^{PV} \langle [\nabla^{\mu}P, V_{\mu\nu}]u^{\nu} \rangle$$
$$\mathcal{L}_{SP} = \lambda_{1}^{SP} \langle u_{\alpha} \{\nabla^{\alpha}S, P\} \rangle$$

$$\sum_{R,R'} \mathcal{L}_{RR'} + \sum_{R,R',R''} \mathcal{L}_{RR'R''} + \dots$$
NEGLECTED

 \rightarrow We will neglect RR' absorptive cuts

 \rightarrow [0/1] Pade Type (M_V fixed) [Masujan, Peris, SC'08]

-It leads to the low-energy large-N $_C$ expression $\ {\cal F}(s) = \ 1 \ + \ \frac{2L_9\,s}{F^2} \ + \ {\cal O}(s^2)$

with the LEC prediction
$$m L_9^{N_C
ightarrow\infty}~=~rac{F_VG_V}{2M_V^2}~=~rac{F^2}{2M_V^2}~\simeq~6.8\cdot 10^{-3}$$
 [Ecker *et al.*'89]

to be compared to the experimental numbers for $10^3 \cdot L_9(M_0)$:

6.9±0.7	[O(p ⁴)χPT; Gasser,Leutwyler'85],	5.93±0.43	[O(p ⁶)χPT; Bijnens,Talavera'02],
7.04±0.23	[τ-RχT; Pich,SC'03],	7.2	[largeN _c ; Kaiser'05],
6.54±0.15	[O(p ⁴) τ-SR;Gonzalez-Alonso et al.'09]	5.50±0.40	[O(p ⁶) τ-SR;Gonzalez-Alonso et al.'09]
J. J. Sanz Cillero		One-loo	p predictions for the $\pi\pi$ -VFF in RyT

Developing $R\chi T$ beyond large N_c

•Only Goldstones counterterms

$$\mathcal{L}_{\rm NLO}^{\rm GB} = -i\tilde{L}_9 \langle f_+^{\mu\nu} u_\mu u_\nu \rangle$$

•Counterterms with resonance fields

$$\mathcal{L}_{\rm NLO}^{V} = X_Z \langle V_{\lambda\nu} \nabla^{\lambda} \nabla_{\rho} \nabla^{2} V^{\rho\nu} \rangle$$

$$+ X_F \langle V_{\mu\nu} \nabla^2 f_+^{\mu\nu} \rangle$$

$$+ 2i X_G \langle V_{\mu\nu} \nabla^2 [u^{\mu}, u^{\nu}] \rangle$$

One-loop predictions for the $\pi\pi$ -VFF in $R\chi T$

J. J. Sanz Cillero

However,

Redundant operators (Proportional to EoM) [Rosell,Pich,SC'04] $\nabla^{\mu}u_{\mu} = \frac{i}{2}\chi_{-} + \dots$ $\nabla^{\mu}\nabla_{\rho}\mathbf{V}^{\rho\nu} - \nabla^{\nu}\nabla_{\rho}\mathbf{V}^{\rho\mu} = -\mathbf{M}_{\mathbf{V}}^{2}\mathbf{V}^{\mu\nu} - \frac{\mathbf{F}_{\mathbf{V}}}{\sqrt{2}}\mathbf{f}_{+}^{\mu\nu} - \frac{\mathbf{i}\mathbf{G}_{\mathbf{V}}}{\sqrt{2}}[\mathbf{u}^{\mu},\mathbf{u}^{\nu}] + \dots$

 $\rightarrow \mathcal{I}_{V}^{NLO}$ operators removable through meson field redefinitions ξ

Instead of the original set of couplings,

the amplitude depends

only on effective combinations

$$\begin{split} & X_{Z,F,G} \stackrel{\xi}{\to} 0, \\ & \tilde{L}_9 \stackrel{\xi}{\to} \tilde{L}_9 + (\sqrt{2}X_F G_V + 2\sqrt{2}F_V X_G - X_Z F_V G_V), \\ & F_V \stackrel{\xi}{\to} F_V + \left(2X_Z F_V M_V^2 - 2\sqrt{2}X_F M_V^2\right), \\ & G_V \stackrel{\xi}{\to} G_V + \left(2X_Z G_V M_V^2 - 4\sqrt{2}X_G M_V^2\right), \\ & M_V^2 \stackrel{\xi}{\to} M_V^2 + 2X_Z M_V^4. \end{split}$$

•<u>VFF up to NLO in 1/N</u>_C

$$\begin{split} \mathcal{F}(s) &= 1 + \frac{F_V G_V}{F^2} \frac{s}{M_V^2 - s} & \Leftarrow \text{LO tree-level} \\ &+ \frac{2\widetilde{L}_9 s}{F^2} - 2 X_Z \frac{F_V G_V}{F^2} \frac{s^3}{(M_V^2 - s)^2} - 4 \sqrt{2} \frac{F_V X_G}{F^2} \frac{s^2}{M_V^2 - s} - 2 \sqrt{2} \frac{X_F G_V}{F^2} \frac{s^2}{M_V^2 - s} & \Leftarrow \text{NLO tree-level} \\ &+ \mathcal{F}(s)_{1 \mathbf{PI}} + \frac{F_V G_V}{F^2} \frac{s \Sigma(s)}{(M_V^2 - s)^2} + \frac{F_V \Gamma(s)}{F^2} \frac{s}{M_V^2 - s} + \frac{\Phi(s) G_V}{F^2} \frac{s}{M_V^2 - s} & \Leftarrow \text{1-loop} \end{split}$$

 $[F_V, G_V, X_Z, X_F...$ renormalize every single Vertex-Function]

• VFF up to NLO in $1/N_{C}$ (AFTER EOM SIMPLIFICATION)

$$\mathcal{F}(s) \; = \; 1 \; + \; \frac{F_V^{eff} G_V^{eff}}{F^2} \frac{s}{M_V^2 - s} \; + \; \frac{2\widetilde{L}_9^{eff} s}{F^2} \; + \; \mathcal{F}(s)^{1 - \ell oop}$$

MEANING: $F_V G_V$, M_V^2 and L_9 are able to make F(s) finite

•From now on, we will always refer to the simplified lagrangian \rightarrow "eff" superscript assumed

J. J. Sanz Cillero

Step 1)

VFF spectral function: ImF(s) at $s \rightarrow \infty$

J. J. Sanz Cillero

•The full VFF must the behaviour $F(s) \rightarrow 0$ when $s \rightarrow \infty$

•Similarly, for its spectral function $ImF(s) \rightarrow 0$ when $s \rightarrow \infty$

•We will demand this behaviour for every two-meson cut

$$\text{ImF}(s)|_{m1,m2} \rightarrow 0$$
 when $s \rightarrow \infty$

•The spectral function shows the generic form:

$$\mathbf{Im}\mathcal{F}(\mathbf{s}) = \mathbf{s} \left(\alpha_{\mathbf{1}}^{(\mathbf{p})} + \alpha_{\mathbf{1}}^{(\ell)} \ln \frac{-\mathbf{s}}{\mathbf{M}^2} \right) + \left(\alpha_{\mathbf{0}}^{(\mathbf{p})} + \alpha_{\mathbf{0}}^{(\ell)} \ln \frac{-\mathbf{s}}{\mathbf{M}^2} \right) + \dots$$

which requires the constraints

$$\alpha_{1}^{(\mathbf{p})} = \alpha_{1}^{(\ell)} = \alpha_{0}^{(\mathbf{p})} = \alpha_{0}^{(\ell)} = \mathbf{0}$$

[Notice that at large Nc, $\alpha_k^{(p)} \equiv \alpha_k^{(\ell)} \equiv 0$ trivially]

J. J. Sanz Cillero

$$\mathbf{F_V}\mathbf{G_V} = \mathbf{F^2}$$
 [Ecker et al.'89]

 $3G_V^2+2c_d^2=F^2$ [Guo,Zheng,SC'07]

$$(\,0 \leq c_d^2 \leq F^2/2, \quad 0 \leq G_V^2 \leq F^2/3\,)$$

(Everything fixed in terms of M_v, M_s, G_v)

J. J. Sanz Cillero

$$\lambda_1^{\mathbf{PV}} = \mathbf{0} \rightarrow \mathbf{F}(\mathbf{s})|_{\mathbf{P}\pi} = \mathbf{0}$$
 trivially

<u>Complicate system</u> \rightarrow <u>Various solutions (6)</u>

Step 2) Full VFF asymptotic behaviour: F(s) at s→∞

J. J. Sanz Cillero

•After constraining ImF(s), the VFF has the structure:

$$\mathcal{F}(s) \; = \; 1 \; + \; \frac{F_V G_V}{F^2} \frac{s}{M_V^2 - s} \; + \; \frac{2 \tilde{L}_9 s}{F^2} \; + \; \mathcal{F}(s)^{1 - \ell oop}$$

•At high-energies, this results
$$\overline{\mathcal{F}}(s)^{1-\ell oop} \stackrel{s \to \infty}{=} \delta_0 + \mathcal{O}(s^{-1})$$

 $\mathcal{F}(s) = \frac{2s}{F^2} \left(\widetilde{L}_9 + \hat{\delta}_1 \right) + \left(1 - \frac{F_V G_V}{F^2} - \hat{\delta}_0 + \delta_0 \right) + \mathcal{O}\left(\frac{1}{s} \right)$

→ This leads to the the NLO constraints:

$$\begin{aligned} \widetilde{\mathbf{L}}_{9} + \widehat{\delta}_{1} &= \mathbf{0} \\ \frac{\mathbf{F}_{V} \mathbf{G}_{V}}{\mathbf{F}^{2}} + \widehat{\delta}_{0} &= \mathbf{1} + \delta_{0} \end{aligned}$$

[Not really physical here; renorm.-scheme choice]

to be compared with their large-N_C values
$$~~\widetilde{L}_9=0\,,~~~ \frac{F_VG_V}{F^2}=1$$

After using the high-energy ImF(s)|_{\pi\pi} constraints $\rightarrow \delta_0^{\pi\pi} \approx 0.23$ $\rightarrow \frac{F^2}{2M_V^2} \delta_0^{\pi\pi} \approx 1.5 \cdot 10^{-3}$

•**P** π contribution:

From the ImF(s)|_{P π} constraints $\rightarrow \delta_0^{P\pi} = 0$

•**A**π contribution:

After using the high-energy $ImF(s)|_{A\pi}$ constraints

→ Complicate expression, but $\rightarrow \delta_0^{A\pi} \approx 0.14$

$$ightarrow rac{\mathbf{F}^2}{2\mathbf{M}_{\mathbf{V}}^2} \delta_0^{\mathbf{A}\pi} \approx 1.0 \cdot 10^{-3}$$

J. J. Sanz Cillero

Low-energy

Low-energy predictions

•At s \rightarrow 0, the RChT expression shows the structure,

$$\mathcal{F}(\mathbf{s}) = \mathbf{1} + \frac{2\mathbf{s}}{\mathbf{F}^{2}} \left[(\widetilde{\mathbf{L}}_{9} + \widehat{\delta}_{1}) + \frac{\mathbf{F}^{2}}{2\mathbf{M}_{\mathbf{V}}^{2}} \left(\frac{\mathbf{F}_{\mathbf{V}} \mathbf{G}_{\mathbf{V}}}{\mathbf{F}^{2}} + \widehat{\delta}_{0} \right) + \xi_{\mathbf{L}_{9}} \right] + \frac{\mathbf{S}}{\mathbf{F}^{2}} \frac{\mathbf{G}_{9}}{\mathbf{16}\pi^{2}} \left(\frac{\mathbf{5}}{\mathbf{3}} - \ln \frac{-\mathbf{s}}{\mu^{2}} \right) + \mathcal{O}(\mathbf{s}^{2}) + \frac{\mathbf{S}}{\mathbf{F}^{2}} \frac{\mathbf{G}_{9}}{\mathbf{16}\pi^{2}} \left(\frac{\mathbf{5}}{\mathbf{3}} - \ln \frac{-\mathbf{s}}{\mu^{2}} \right) + \mathcal{O}(\mathbf{s}^{2})$$
with the log coefficient $\mathbf{G}_{9} = \mathbf{\Gamma}_{9} = \frac{1}{4}$, matching ChPT
Chiral symmetry

•This has the same form as ChPT,

$$\mathcal{F}(\mathbf{s}) = \mathbf{1} + \frac{2\mathbf{L}_{9}(\mu_{\chi})\mathbf{s}}{\mathbf{F}^{2}} + \frac{\mathbf{s}}{\mathbf{F}^{2}}\frac{\Gamma_{9}}{16\pi^{2}}\left(\frac{5}{3} - \ln\frac{-\mathbf{s}}{\mu_{\chi}^{2}}\right) + \mathcal{O}(\mathbf{s}^{2})$$

•This leads to the prediction for the ChPT LECs,

$$\mathbf{L}_{9}(\mu_{\chi}) = \frac{\mathbf{F}^{2}}{2\mathbf{M}_{\mathbf{V}}^{2}} \left(\frac{\mathbf{F}_{\mathbf{V}} \mathbf{G}_{\mathbf{V}}}{\mathbf{F}^{2}} + \hat{\delta}_{0} \right) + (\widetilde{\mathbf{L}}_{9} + \hat{\delta}_{1}) + \xi_{\mathbf{L}_{9}} + \frac{\mathbf{\Gamma}_{9}}{32\pi^{2}} \ln \frac{\mu^{2}}{\mu_{\chi}^{2}}$$

For instance, with only the $\pi\pi$ loops considered,

$$\xi_{L_9} = \frac{c_d^2 \log \left(\frac{M_S^2}{\mu^2}\right)}{64\pi^2 F^2} - \frac{11 c_d^2}{384\pi^2 F^2} + \frac{F_V G_V^3 \log \left(\frac{M_V^2}{\mu^2}\right)}{64\pi^2 F^4} - \frac{5 F_V G_V^3}{192\pi^2 F^4} + \frac{G_V^2 \log \left(\frac{M_V^2}{\mu^2}\right)}{128\pi^2 F^2} + \frac{25 G_V^2}{768\pi^2 F^2}$$

•Using the high-energy constraints up to NLO $\rightarrow L_9(\mu) = \frac{F^2}{2M_V^2} \left(1 + \delta_0\right) + \xi_{L_9}$

TO NOTICE: Exact recovery of the μ running dependence

J. J. Sanz Cillero

After using the high-energy ImF(s)|_{$\pi\pi$} constraints $\rightarrow \xi_{L9}^{\pi\pi} \approx -1.6 \cdot 10^{-3}$

•**P**π contribution:

From the ImF(s)|_{P π} constraints $\rightarrow \xi_{L9}^{P\pi} = 0$

•<u>Aπ contribution:</u>

After using the high-energy $\text{ImF}(s)|_{A\pi}$ constraints

→ Complicate expression, but $\xi_{L9}^{A\pi} \approx -0.1 \cdot 10^{-3}$

Numerical determinations

(PRELIMINARY)

J. J. Sanz Cillero

 $M_v=0.76 \Leftrightarrow 0.78 \text{ GeV}, M_s=0.98 \Leftrightarrow 1.2 \text{ GeV}, F=89 \text{ MeV}, G_v = F/\sqrt{3} \Leftrightarrow 40 \text{ MeV},$ •Inputs: M_A= 1.23⇔ 1.00 GeV, F_A = 123⇔89 MeV $[A\pi \text{ channel} \rightarrow]$ $L_9^{N_C
ightarrow \infty} = 6.7 \cdot 10^{-3}$ •At LO in $1/N_{c}$: $\mathbf{L}_{9}(\mu_{0}) = (6.6 \pm 0.4) \cdot 10^{-3},$ •NLO with $\pi\pi$: with $\mu_0 = 0.77 \,\mathrm{GeV}$ (=NLO with $\pi\pi + P\pi$) •NLO with $\pi\pi + P\pi + A\pi$: $L_9(\mu_0) = (7.5 \pm 0.5) \cdot 10^{-3}$, with $\mu_0 = 0.77 \,\mathrm{GeV}$

Conclusions

and

PROSPECTS

J. J. Sanz Cillero

- Clear theoretical organization of the NLO computation:
 - Loop contribution
 - Relevant physical couplings
- Succesful test of the $1/N_c$ expansion in RChT
- Very slight problem with the $A\pi$ channel ("high" range of L_9^{exp} values)
- <u>Next step:</u>

- Detailed uncertainty estimate
- Extraction of the VFF O(p⁶) LECs
- Analysis of experimental VFF data

$$\frac{\mathcal{F}(t)}{t} = \frac{D(t)}{\left(M_V^2 - t\right)^2},$$

$$\frac{\mathcal{F}(s)}{s} = \frac{1}{2\pi i} \oint dt \frac{\mathcal{F}(t)}{t(t-s)}.$$

$$\frac{1}{s} \mathcal{F}(s) = \frac{1}{s} + \sum_{m_1,m_2} \frac{1}{s} \overline{\mathcal{F}}(s)|_{m_1,m_2} - \frac{\operatorname{Re}D'(M_V^2)}{M_V^2 - s} + \frac{\operatorname{Re}D(M_V^2)}{\left(M_V^2 - s\right)^2},$$

$$\overline{\mathcal{F}}(s)|_{m_1,m_2} = \lim_{\epsilon \to 0} \left[\frac{s}{\pi} \int_0^{M_V^2 - \epsilon} \mathrm{d}t \, \frac{\mathrm{Im}\mathcal{F}(t)|_{m_1,m_2}}{t \, (t - s)} + \frac{s}{\pi} \int_{M_V^2 + \epsilon}^{\infty} \mathrm{d}t \, \frac{\mathrm{Im}\mathcal{F}(t)|_{m_1,m_2}}{t \, (t - s)} \right. \\ \left. - \frac{2s}{\pi \epsilon} \lim_{t \to M_V^2} \left\{ (M_V^2 - t)^2 \, \frac{\mathrm{Im}\mathcal{F}(t)|_{m_1,m_2}}{t \, (t - s)} \right\} \right] .$$

$$\mathcal{F}(t) = 1 + \sum_{m_1, m_2} \overline{\mathcal{F}}(t)|_{m_1, m_2} - \frac{s \operatorname{Re} D'(M_V^2)}{M_V^2 - t}$$
$$= 1 + \frac{F_V G_V}{F^2} \frac{s}{M_V^2 - s} + \sum_{m_1, m_2} \mathcal{F}(t)|_{m_1, m_2},$$

J. J. Sanz Cillero

•What about extra tadpole terms?

They all are real rational functions of the form of

the L_9 (local) and F_VG_V (pole) terms, i.e.,

$$\mathcal{F}(s)^{^{\mathrm{tad.}}} = \frac{2 s}{F^2} \delta_1^{^{\mathrm{tad.}}} - \frac{\delta_0^{^{\mathrm{tad.}}} s}{M_V^2 - s}$$

→HOWEVER,

These couplings (or their combination with possible tadpole)

will be fully fixed later

through high-energy constraints

•Likewise, we will consider the on-shell mass scheme \rightarrow M_V=770 MeV

•Inputs: $M_V=0.77 \text{ GeV}$, $M_S=0.98 \text{ GeV}$, $M_A=0.95 \Leftrightarrow 1.3 \text{ GeV}$ F=89 MeV, $G_V=45 \Leftrightarrow F/\sqrt{3}$

•At LO in 1/N_C:
$$L_9^{N_C
ightarrow \infty} = \, 6.7 \cdot 10^{-3}$$

•NLO with $\pi\pi$: $\mathbf{L}_9(\mu_0) = 6.6 \cdot 10^{-3}$, with $\mu_0 = 0.77 \, \mathrm{GeV}$

(=NLO with $\pi\pi + P\pi$)

•NLO with $\pi\pi + P\pi + A\pi$: $L_9(\mu_0) = 7.5 \cdot 10^{-3}$, with $\mu_0 = 0.77 \, \text{GeV}$

After using the high-energy ImF(s)|_{$\pi\pi$} constraints $\rightarrow \delta_1^{\pi\pi} = \delta_0^{\pi\pi} = 0$

•**P**π contribution:

Similarly, from the ImF(s)|_{P π} constraints $\rightarrow \delta_1^{P\pi} = \delta_0^{P\pi} = 0$

•<u>Aπ contribution:</u>

After using the high-energy $\text{Im}F(s)|_{A\pi}$ constraints

→ Complicate expression, but $\delta_1^{A\pi}$, $\delta_0^{\pi\pi} \neq 0$

Vector Form Factor to $A\pi$ (Figure D.2)

$$\langle A_{I=1}^{0}(p_{A},\varepsilon)\pi^{-}(p_{\pi})|\bar{d}\gamma^{\mu}u|0\rangle = \frac{i\sqrt{2}}{M_{A}} \Big\{ (q\varepsilon^{*}p_{A}^{\mu} - qp_{A}\varepsilon^{*\mu})\mathcal{F}_{A\pi}^{v}(q^{2}) \\ + (q\varepsilon^{*}p_{\pi}^{\mu} - qp_{\pi}\varepsilon^{*\mu})\mathcal{G}_{A\pi}^{v}(q^{2}) \Big\},$$

$$\mathcal{F}_{A\pi}^{v}(q^{2}) = \frac{F_{A}}{F} + \frac{F_{V}}{F} \frac{M_{A}^{2} - q^{2}}{M_{V}^{2} - q^{2}} \Big[-2\lambda_{2}^{VA} + 2\lambda_{3}^{VA} - \lambda_{4}^{VA} - 2\lambda_{5}^{VA} \Big],$$

$$\mathcal{G}_{A\pi}^{v}(q^{2}) = \frac{2F_{V}}{F} \frac{M_{A}^{2}}{M_{V}^{2} - q^{2}} \Big[-2\lambda_{2}^{VA} + \lambda_{3}^{VA} \Big],$$

