





## Holographic hadron phenomenology A bottom-up roach **Stefano Nicotri IPPP, Durham University, Durham, UK** In collaboration with P. Colangelo, F. De Fazio, F. Giannuzzi and F. Jugeau

QCD@Work 2010, June 20-23, Martina Franca, Italy

#### Outline

- QCD @ Strong Coupling
- AdS/CFT and AdS/QCD
- Bottom-up approach: Soft Wall model(s?)
- Implementation of a global symmetry: Chiral Symmetry
- **Breaking and Scalar Mesons**
- Calculation of correlation functions: Scalar Glueballs
- Static QQbar Potential
- Finite Temperature Effects
- Pros, Cons
- Conclusions and Perspectives

#### **QCD** @ Strong Coupling

perturbation theory fails

Low energy

how to evaluate nonperturbative observables (masses, decay constants, correlation functions....)?



can we map the non-perturbative regime of QCD into something (perturbative) else?

#### AdS/CFT and AdS/QCD



## AdS/QCD @ Work

#### study the NP regime of QCD through semiclassical approach



Easy

- $\mathcal{N} = 4 \text{ SYM}$
- adjoint fermions
- conformally invariant
- maximally supersymmetric

#### QCE

- fundamental fermions
- not conformal (....)

...

not supersymmetric

## AdS/QCD: how?



#### bottom-up AdS/QCD: Soft-Wall model(s)



**Topics covered**: chiral symmetry breaking, hadron spectra, decay constants, form factors, condensates, structure functions, deep inelastic scattering, heavy-quark potential, finite temperature, .....

#### **Chiral Symmetry Breaking and Scalar Mesons**





#### **Static QQbar Potential**





## QCD phase diagram

nontrivial vacuum

structure



• Chiral symmetry restoration (vanishing of the chiral condensate)

Observation: Deconfinement transition: non-zero free-quark density (I order? Crossover?)

Formation of Quark-Gluon Plasma (hot-dense medium)

strong dynamics

## **QCD** phase diagram



• Chiral symmetry restoration (vanishing of the chiral condensate)

- Observation: Deconfinement transition: non-zero free-quark density (I order? Crossover?)
- Formation of Quark-Gluon Plasma (hot-dense medium)

## Hadrons In Hot Medium





#### Scalar Glueball (AdS/BH)



## Scalar Glueball (ThAdS + AdS/BH)



#### **Pros And Cons**

| Soft-Wall - (SW-)                                         |                                       | Soft-Wall + (SW+)                                      |                                       |  |
|-----------------------------------------------------------|---------------------------------------|--------------------------------------------------------|---------------------------------------|--|
| $m_q$ and $\sigma = \langle \bar{q}q \rangle$ independent |                                       | $= 0 $ $m_q \propto \sigma = \langle \bar{q}q \rangle$ |                                       |  |
| Linear Confinement                                        | 000                                   | NO Linear Confinement                                  |                                       |  |
| <b>Regge Trajectories</b>                                 | $\bigcirc \bigcirc \bigcirc \bigcirc$ | Regge Trajectories                                     | $\bigcirc \bigcirc \bigcirc \bigcirc$ |  |
| $m_{G_0}=m_\rho=776~{\rm MeV}$                            |                                       | $m_{G_0} \sim 1.1 { m ~GeV}$                           | $\bigcirc \bigcirc \bigcirc \bigcirc$ |  |
| $m_{G_{0^+}} < m_{G_{0^-}}$                               | 000                                   | $m_{G_{0^+}} > m_{G_{0^-}}$                            |                                       |  |
| $m_{S_0} \sim 549 { m ~MeV}$                              | 000                                   | $m_{S_0} \sim 950 { m ~MeV}$                           | $\bigcirc \bigcirc \bigcirc \bigcirc$ |  |
| $g_{S\pi\pi} \sim \mathcal{O}(100 \text{ MeV})$           |                                       | $g_{S\pi\pi} \sim \mathcal{O}(10 \text{ MeV})$         |                                       |  |
| dim 2 condensate                                          | 000                                   | dim 2 condensate                                       |                                       |  |
|                                                           | (T)                                   | > 0)                                                   |                                       |  |
| Spectral functions compatible with LQCD                   | 000                                   | Spectral functions compatible with LQCD                | $\bigcirc \bigcirc \bigcirc \bigcirc$ |  |
| Wrong Scale                                               |                                       | Wrong Scale (but rigth for large N)                    | $\bigcirc \bigcirc \bigcirc \bigcirc$ |  |
| Dissociation independent on deconfinement                 | 000                                   | Dissociation coincident with deconfinement             | $\bigcirc \bigcirc \bigcirc \bigcirc$ |  |

### **Conclusions And Perspectives**

Holographic QCD: ( $\sim$ ) new approach to the non-perturbative regime of strong interactions



- Both SW± catch some key features of QCD
- Relatively simple models
- Both SW± have pros and cons
- At present SW seems to a little better working than SW+

The whole approach seems very promising, but new efforts have to be put in the game

# Thank you for your attention



#### **Conformal transformations**

conformal group in d + 1-dim  $\sim SO(2, d)$ 

$$g_{\alpha\beta} \to f(x^\mu) \, g_{\alpha\beta}$$

$$\dim [SO(2,d)] = \frac{1}{2} (d+1) (d+2)$$

|                  |             | Transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Generator                                                           |  |
|------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| (                | Translation | $x'^{\mu} = x^{\mu} + a^{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $P_{\mu} = -i\partial_{\mu}$                                        |  |
|                  | Rotation    | $x'^{\mu} = M^{\mu}{}_{\nu}x^{\nu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$     |  |
|                  | Dilation    | $x'^{\mu} = ax^{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $D = -ix^{\mu}\partial_{\mu}$                                       |  |
|                  | SCT         | $x'^{\mu} = \frac{x^{\mu} - b^{\mu} x^2}{1 - 2b \cdot x + b^2 x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $K_{\mu} = -i(2x_{\mu}x^{\nu}\partial_{\nu} - x^{2}\partial_{\mu})$ |  |
| Poincaré         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |  |
| group            |             | $\begin{bmatrix} D, P_{\mu} \end{bmatrix} = iP_{\mu}$ $\begin{bmatrix} D, K \end{bmatrix} = -iK$                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |  |
| scale invariance |             | $\begin{bmatrix} D, R_{\mu} \end{bmatrix} = iR_{\mu}$ $\begin{bmatrix} K_{\mu}, P_{\nu} \end{bmatrix} = 2i(\eta_{\mu\nu}D - L_{\mu\nu})$ $\begin{bmatrix} K_{\rho}, L_{\mu\nu} \end{bmatrix} = i(\eta_{\rho\mu}K_{\nu} - \eta_{\rho\nu}K_{\mu})$ $\begin{bmatrix} P_{\rho}, L_{\mu\nu} \end{bmatrix} = i(\eta_{\rho\mu}P_{\nu} - \eta_{\rho\nu}P_{\mu})$ $\begin{bmatrix} L_{\mu\nu}, L_{\rho\sigma} \end{bmatrix} = i(\eta_{\nu\rho}L_{\mu\sigma} + \eta_{\mu\sigma}L_{\nu\rho} - \eta_{\nu\sigma}L_{\mu\rho} - \eta_{\mu\rho}L_{\nu\sigma})$ |                                                                     |  |
| no mass sc       | ales        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |  |

#### **Conformal invariance in QFT**

what does conformal invariance mean in a QFT?



#### **Anti-de Sitter spacetime**



isometry group SO(2,d) same as d-dim conformal group acts on the boundary z=0 (d-dim Minkowski spacetime) as the conformal group

#### **AdS/CFT correspondence**





it would be fine if we could find something similar for non-conformal theories (or even better for QCD.....)

#### Scalar Glueball in AdS/BH soft wall scenario

Deconfined phase: hadrons interacting with a supercooled quark gluon plasma

$$\begin{aligned}
\begin{aligned}
ds^{2} &= \frac{R^{2}}{z^{2}} \left( f(z)dt^{2} - d\bar{x}^{2} - \frac{dz^{2}}{f(z)} \right) \\
f(z) &= 1 - \frac{z^{4}}{z^{4}_{h}} \quad 0 < z < z_{h}
\end{aligned}$$

$$\begin{aligned}
\mathbf{W}(x, z) \\
\mathbf{W}(x, z)$$

$$W(x,z) = \int d^4x' \, K(x-x',z) W_0(x') \xrightarrow{\text{Fourier}} \tilde{W}(q,z) = \tilde{K}(q,z) \tilde{W}_0(q)$$

$$\tilde{K}''(q,z) - \frac{4 - f(z) + 2c^2 z^2 f(z)}{z f(z)} \,\tilde{K}'(q,z) + \left(\frac{q_0^2}{f(z)^2} - \frac{\bar{q}^2}{f(z)}\right) \tilde{K}(q,z) = 0$$

#### Scalar Glueball in AdS/BH soft wall scenario



#### Scalar Glueball in AdS/BH soft wall scenario: $\bar{q} \neq 0$



