Bs decays into charmonium and the extraction of $\beta \mathbf{s}$

βs
Bs \rightarrow fo(980) form factors
Bs decays into charmonium

Wei Wang

In collaboriton the letro Colangelo and Fulvia De Fazio
QCD@work Martina Franca July 20-23, 2010

Time-dependent CP Violation in Bs decays

CKM ansatz: CPV is due to a complex phase in the quark mixing matrix

$$
\begin{aligned}
& V_{n=3}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & \underline{V_{u b}} \\
V_{c d} & V_{c s} & \overline{V_{c b}} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \simeq\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
\end{aligned}
$$

mixing induced CP violation

$\beta_{s}=\arg [-\mathrm{VtsVtb} * / V c s V c b *]$

ϕ_{s} from golden mode $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

$\mathrm{B}_{\mathrm{s}}\left(\overline{\mathrm{B}}_{\mathrm{s}}\right) \rightarrow \mathrm{J} / \psi(\mu+\mu-) \phi(\mathrm{K}+\mathrm{K}-)$ can proceed directly or through mixing

$$
\begin{gathered}
A_{C P}(t)=\frac{\Gamma\left[\bar{B}_{s}(t) \rightarrow f\right]-\Gamma\left[B_{s}(t) \rightarrow f\right]}{\Gamma\left[\bar{B}_{s}(t) \rightarrow f\right]+\Gamma\left[B_{s}(t) \rightarrow f\right]} \\
A_{C P}(t)=\frac{\eta_{f} \sin \phi_{s} \sin \left(\Delta m_{s}\right) t}{\cosh \left(\Delta \Gamma_{s} t / 2\right)-\eta_{f} \cos \phi_{s} \sinh \left(\Delta \Gamma_{s} t / 2\right)}
\end{gathered}
$$

ϕ_{s} from golden mode $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

SM: $\phi s=-2 \beta s=-0.04$
CDF+D0:[-1.47;-0.29] $\cup[-2.85 ;-1.65]$ 90\% CL

First evidence of New Physics?

Uncertainties of the data are still large.

ϕ_{s} from golden mode $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

New CDF measurement of β_{s}

68\% CL: [0.0, 0.5] U [1.1, 1.5]
95\% CL: [-0.1, 0.7] U [0.9, pi/2] U [-pi/2, -1.5]

Coverage adjusted 2D likelihood contours for β_{s} and $\Delta \Gamma$
CDF II Preliminary $5.2 \mathrm{fb}^{-1}$
$B_{s} \rightarrow X_{c \bar{c}} L$
$b \rightarrow c \bar{c}$ tree

$$
\begin{aligned}
X_{c \bar{c}} & =J / \psi, \eta_{c}, \Psi(2 S), \eta_{c}(2 S), \chi_{c 0, c 1, c 2}, h_{c} \\
L & =\phi, \eta, \eta^{\prime}, f_{0}(980)
\end{aligned}
$$

Bs->f0 form factors

Form factors are defined as:

$$
\begin{aligned}
\left\langle f_{0}\left(p_{f_{0}}\right)\right| \bar{s} \gamma_{\mu} \gamma_{5} b\left|\overline{B_{s}}\left(p_{B_{s}}\right)\right\rangle & =-i\left\{F_{1}\left(q^{2}\right)\left[P_{\mu}-\frac{m_{B_{s}}^{2}-m_{f_{0}}^{2}}{q^{2}} q_{\mu}\right]+F_{0}\left(q^{2}\right) \frac{m_{B_{s}}^{2}-m_{f_{0}}^{2}}{q^{2}} q_{\mu}\right\} \\
\left\langle f_{0}\left(p_{f_{0}}\right)\right| \bar{s} \sigma_{\mu \nu} \gamma_{5} q^{\nu} b\left|\overline{B_{s}}\left(p_{B_{s}}\right)\right\rangle & =-\frac{F_{T}\left(q^{2}\right)}{m_{B_{s}}+m_{f_{0}}}\left[q^{2} P_{\mu}-\left(m_{B_{s}}^{2}-m_{f_{0}}^{2}\right) q_{\mu}\right]
\end{aligned}
$$

We use the LCSR to compute the form factors. Consider a generic correlation function

$$
\Pi\left(p_{f_{0}}, q\right)=i \int d^{4} x e^{i q \cdot x}\left\langle f_{0}\left(p_{f_{0}}\right)\right| \top\left\{j_{\Gamma_{1}}, j_{\Gamma_{2}}\right\}|0\rangle
$$

Hadron level:

$$
\begin{aligned}
\Pi= & \frac{\left\langle f_{0}\left(p_{f_{0}}\right)\right| j_{r_{2}}\left|\overline{B_{s}}\left(p_{B_{s}}\right)\right\rangle\left\langle\overline{B_{s}}\left(p_{B_{s}}\right)\right| j_{\Gamma_{2}}|0\rangle}{m_{B_{s}}^{2}-\left(p_{B_{s}}\right)^{2}} \\
& +\ldots \\
& \left\langle\bar{B}_{s}\left(p_{B_{s}}\right)\right| \bar{b} i \gamma_{5} s|0\rangle=\frac{m_{B_{s}}^{2}}{m_{b}+m_{s}} f_{B_{s}}
\end{aligned}
$$

Quark level: Light cone OPE

$$
\begin{aligned}
& \left\langle f_{0}\left(p_{f_{0}}\right)\right| \bar{s}(x) \gamma_{\mu} s(0)|0\rangle \\
= & \bar{f}_{f_{0}} p_{f_{0} \mu} \int_{0}^{1} d u e^{i u p_{f_{0}} \cdot x} \Phi_{f_{0}}(u) \\
\Phi_{f_{0}}(u)= & 6 u(1-u) \sum_{n=1} B_{n} C_{n}^{3 / 2}(2 u-1) \\
B_{1}= & (-0.78 \pm 0.08)
\end{aligned}
$$

H.Y. Cheng, C.K.Chua, K.C.Yang, PRD73,014017(2006)

Bs->f0 form factors

Parameters of the $B_{s} \rightarrow f_{0}$ form factors by LCSR at the leading order.

	$F_{i}\left(q^{2}=0\right)$	a_{i}	b_{i}	$F_{i}\left(q_{\max }^{2}\right)$
F_{1}	0.185 ± 0.029	$1.44_{-0.09}^{+0.13}$	$0.59_{-0.05}^{+0.07}$	$0.614_{-0.102}^{+0.158}$
F_{0}	0.185 ± 0.029	$0.47_{-0.09}^{+0.12}$	$0.01_{-0.09}^{+0.8}$	$0.268_{-0.038}^{+0.055}$
F_{T}	0.228 ± 0.036	$1.42_{-0.10}^{+0.13}$	$0.60_{-0.05}^{+0.06}$	$0.714_{-0.126}^{+0.197}$

$$
F_{i}\left(q^{2}\right)=\frac{F_{i}(0)}{1-a_{i} q^{2} / m_{B_{s}}^{2}+b_{i}\left(q^{2} / m_{B_{s}}^{2}\right)^{2}},
$$

P.Colangelo, F. De Fazio, W.W., PRD81:074001,2010

Bs->f0 form factors

NLO B->pi:

G.Duplancic, A.Khodjamirian, T.Mannel, B.Melic and N.Offen, JHEP 0804,014(2008)

Parameters of the $B_{s} \rightarrow f_{0}$ form factors by LCSR at the leading order.

	$F_{i}\left(q^{2}=0\right)$	a_{i}	b_{i}	$F_{i}\left(q_{\max }^{2}\right)$
F_{1}	0.185 ± 0.029	$1.44_{-0.09}^{+0.13}$	$0.59_{-0.05}^{+0.07}$	$0.614_{-0.102}^{+0.158}$
F_{0}	0.185 ± 0.029	$0.47_{-0.09}^{+0.12}$	$0.01_{-0.09}^{+0.8}$	$0.268_{-0.038}^{+0.055}$
F_{T}	0.228 ± 0.036	$1.42_{-0.10}^{+0.13}$	$0.60_{-0.05}^{+0.06}$	$0.714_{-0.126}^{+0.197}$

$$
F_{i}\left(q^{2}\right)=\frac{F_{i}(0)}{1-a_{i} q^{2} / m_{B_{s}}^{2}+b_{i}\left(q^{2} / m_{B_{s}}^{2}\right)^{2}},
$$

P.Colangelo, F. De Fazio, W.W., PRD81:074001,2010

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}}\left\{V_{d b} V_{c s}^{*}\left[C_{1}(\mu) O_{1}+C_{2}(\mu) O_{2}\right]-V_{t b} V_{t s}^{*}\left[\sum_{i=3}^{10,7, \gamma_{s}} C_{i}(\mu) O_{i}(\mu)\right]\right\} \\
O_{1}=\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) c \bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b \\
O_{2}=\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) c
\end{gathered}
$$

Bs decays

No annihilation
Factorization assumption:
$\left\langle X_{c \bar{c}} L\right| O\left|B_{s}\right\rangle \sim f_{X_{c \bar{c}}} F^{B_{s} \rightarrow L} \times a_{2}$
Color suppressed: $\mathrm{a} 2=\mathrm{C} 2+\mathrm{C} 1 / 3 \sim 0.1$

Bs decays

Color suppressed: $\mathrm{a}_{2}=\mathrm{C}_{2}+\mathrm{C}_{1} / 3$
No annihilation
Factorization assumption:
$\left\langle X_{c \bar{c}} L\right| O\left|B_{s}\right\rangle \sim f_{X_{c \bar{c}}} F^{B_{s} \rightarrow L} \times a_{2}$
With the inclusion of QCD corrections:
a 2 is not universal but channel-dependent.

Bs decays

Channel	$a_{2}^{\text {CDSS }}$	a_{2}^{BZ}	Channel	$a_{2}^{\text {CDSS }}$	a_{2}^{BZ}
$J / \psi \eta\left(\eta^{\prime}\right)$	0.40 ± 0.007	0.26 ± 0.005	$\eta_{c} \eta($	0.36 ± 0.03	0.25 ± 0.02
$J / \psi f_{0}$	0.40 ± 0.05	0.26 ± 0.035	$\eta_{c} f_{0}$	0.36 ± 0.05	0.25 ± 0.04
$\psi(2 S) \eta\left(\eta^{\prime}\right)$	0.50 ± 0.02	0.31 ± 0.01	$\eta_{c}(2 S) \eta\left(\eta^{\prime}\right)$	0.31 ± 0.08	0.21 ± 0.06
$\psi(2 S) f_{0}$	0.50 ± 0.065	0.31 ± 0.04	$\eta_{c}(2 S) f_{0}$	0.31 ± 0.09	0.21 ± 0.06
Channel	$a_{2}^{\text {CDSS }} f_{\text {Xc1 }}$	$a_{2}^{\mathrm{BZ}} f_{\text {¢c1 }}$	Channel	$a_{2}^{\text {CDSS }} f_{\text {Xe1 }}$	$a_{2}^{\mathrm{BZ}} f_{\chi_{\text {cl }}}$
$\chi_{\text {cl }} \eta\left(\eta^{\prime}\right)$	0.122 ± 0.006	0.076 ± 0.004	$\chi_{\text {cil }} f_{0}$	0.122 ± 0.016	0.076 ± 0.010
${ }^{\text {c }}$	-	0.0345 ± 0.006			

CDSS: Three point QCD sum rules P.Colangelo, F.De Fazio, P.Santorelli and E.Scrimieri, PRD53, 3672

BZ: Light cone sum rules
P.Ball and R.Zwicky,

PRD71, 014015; D71, 014029
in units of GeV
a2 is not universal
a2(CDSS) is larger than a2(BZ)
the product of $\mathrm{a} 2 *_{\mathrm{f}} \mathrm{x} \mathrm{c} 1$ is used for channels involving $\mathrm{X}_{\mathrm{c} 1}$

Bs decays

Channel	CDSS	B2	Exp.	Chamel	CDSS	B2	Belle, 0912.1434
$J / \psi \eta$	4.3 ± 0.2	4.2 ± 0.2	3.32 ± 1.02	${ }^{n+7}$	4.0 ± 0.7	3.9 ± 0.6	
$J / \psi \eta^{\prime}$	4.4 ± 0.2	4.3 ± 0.2	3.1 ± 1.39	$\eta_{c} \eta^{\prime}$	4.6 ± 0.8	4.5 ± 0.7	
$J / \psi f_{0}$	4.7 ± 1.9	2.0 ± 0.8	<3.26	$\eta_{c} f_{0}$	4.1 ± 1.7	2.0 ± 0.9	
$\psi(2 S) \eta$	2.9 ± 0.2	3.0 ± 0.2		$\eta_{c}(2 S) \eta$	1.5 ± 0.8	1.4 ± 0.7	
$\psi(2 S) \eta^{\prime}$	2.4 ± 0.2	2.5 ± 0.2		$\eta_{c}(2 S) \eta^{\prime}$	1.6 ± 0.9	1.5 ± 0.8	
$\psi(2 S) f_{0}$	2.3 ± 0.9	0.89 ± 0.36		$\eta_{c}(2 S) f_{0}$	0.58 ± 0.38	1.3 ± 0.8	
J/ $/$ ¢	-	16.7 ± 5.7	13 ± 4	$n . \dot{d}$	-	15.0 ± 7.8	
$\psi(2 S) \phi$	-	\% 3.3 ± 2.7	0.8 ± 3.0				
<c17	2.0 ± 0.2	2.0 ± 0.2		$\chi_{\text {cel }} f_{0}$	1.88 ± 0.77	0.73 ± 0.30	PDG
$\chi_{\text {cli }}{ }^{\prime}$	1.9 ± 0.2	1.8 ± 0.2		<cı ${ }^{\text {d }}$	-	3.3 ± 1.3	
$B R\left(10^{-4}\right)$							

CDSS: Three point QCD sum rules P.Colangelo, F.De Fazio, P.Santorelli

Channel	Theory	Experiment
$J / \psi \phi$	51.3 ± 5.8	54.1 ± 1.7
$\Psi(2 S) \phi$	41.0 ± 3.7	
$\chi_{c 1} \phi$	43.9 ± 4.4	

$$
f_{L}=\frac{\Gamma_{L}}{\Gamma_{\mathrm{tot}}}(\%)
$$

and E.Scrimieri, PRD53, 3672

BZ: Light cone sum rules P.Ball and R.Zwicky, PRD71, 014015; D71, 014029

$$
B_{s} \rightarrow J / \psi f_{0}
$$

$$
(13 \pm 4) \times 10^{-4}
$$

$>$ Estimation from Ds decays: $R_{f_{0} / \phi}=(0.2-0.5)$
Stone \& Zhang,arXiv:0812.2832; 0909.5442
>Factorization: $\quad \mathcal{B}=(3.1 \pm 2.4) \times 10^{-4}$
P.Colangelo, F. De Fazio, W.W. PRD81,074001
\Rightarrow QCD factorization $\mathcal{B}=(1.3-1.7) \times 10^{-4}$ O.Leitner, et. al, 1003.5980
>Factorization+ flavor symmetry: two predictions

$$
\begin{aligned}
& \mathcal{B}=(4.7 \pm 1.9) \times 10^{-4} ; \quad \mathcal{B}=(2.0 \pm 0.8) \times 10^{-4} \\
& \text { P.Colangelo, F. De Fazio, w.W. in preparation }
\end{aligned}
$$

$>$ Recent experimental data:

$$
\mathcal{B}\left(\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathbf{J} / \psi \mathbf{f}_{0}\right) \times \mathcal{B}\left(\mathbf{f}_{0} \rightarrow \pi^{+} \pi^{-}\right)<\mathbf{1 . 6 3} \times \mathbf{1 0}^{-4} \text { (at 90\% C.L.) }
$$

Remi Louvot (Belle) FPCP2010
Theoretical predictions will be tested in the near future.

$$
B_{s} \rightarrow J / \psi f_{0}
$$

$>$ Estimation from Ds decays: $\mathcal{B}=(2-8) \times 10^{-4}$
Stone \& Zhang,arXiv:0812.2832; 0909.5442
>Factorization: $\mathcal{B}=(3.1 \pm 2.4) \times 10^{-4}$
P.Colangelo, F. De Fazio, W.W. PRD81,074001
\Rightarrow QCD factorization $\mathcal{B}=(1.3-1.7) \times 10^{-4}$ O.Leitner, et. al, 1003.5980
>Factorization+ flavor symmetry: two predictions

$$
\begin{aligned}
& \mathcal{B}=(4.7 \pm 1.9) \times 10^{-4} ; \quad \mathcal{B}=(2.0 \pm 0.8) \times 10^{-4} \\
& \text { P.Colangelo, F. De Fazio, w.W. in preparation }
\end{aligned}
$$

$>$ Recent experimental data:

$$
\mathcal{B}\left(\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathbf{J} / \psi \mathbf{f}_{0}\right) \times \mathcal{B}\left(\mathbf{f}_{0} \rightarrow \pi^{+} \pi^{-}\right)<\mathbf{1 . 6 3} \times \mathbf{1 0}^{-4} \text { (at 90\% C.L.) }
$$

Remi Louvot (Belle) FPCP2010

$$
\mathcal{B}\left(f_{0} \rightarrow \pi^{+} \pi^{-}\right)=\left(50_{-9}^{+7}\right) \% \text { BES, PRD } 72,092002
$$

Theoretical predictions will be tested in the near future.

Nonleptonic B_{s} Decays into $\left(\chi_{c 0}, \chi_{c 2}, h_{c}\right)$

Factorization fails:

- vanishing decay constants
- Infrared divergences: see M.Beneke, L. Vernazza, 0810.3575

Assuming SU(3) symmetry for decay amplitudes, the BRs of Bs decays are predicted as (in units of $10^{\wedge}(-4)$)

Channel	\mathcal{B}	Channel	\mathcal{B}	Channel	\mathcal{B}	
$\chi_{c 0} \eta$	0.85 ± 0.13	$\chi_{c 2} \eta$	<0.17	$h_{c} \eta$	<0.23	$B_{s} \rightarrow \chi_{c 0} \phi$ may provide a side-
$\chi_{c 0} \eta^{\prime}$	0.87 ± 0.13	$\chi_{c 2} \eta^{\prime}$	<0.17	$h_{c} \eta^{\prime}$	<0.23	check when the number of
$\chi_{c 0} f_{0}$	1.15 ± 0.17	$\chi_{c 2} f_{0}$	<0.29	$h_{c} f_{0}$	<0.30	accumulated data increases
$\chi_{c 0} \phi$	1.59 ± 0.38	$\chi_{c 2} \phi$	$<0.10(0.62 \pm 0.17)$	$h_{c} \phi$	(<1.9)	accumulated data increases.

$\chi_{c 0}$ decay modes:

$$
2\left(\pi^{+} \pi^{-}\right)+\pi^{+} \pi^{-} K^{+} K^{-}+2\left(K^{+} K^{-}\right) \sim 4 \%
$$

Summary

Bs-> f0 form factors in LCSR

\rightarrow LO

estimate of QCD corrections

Bs decays into charmonium are computed by making use of the SU(3) symmetry.

\triangleleft Results of Bs-> J/世 ($\left.\phi, \eta, \eta^{\prime}\right)$ are well consistent with the data

- Bs-> J/ Ψ fo will be tested in the near future and could be helpful for the measurement of βs
\checkmark Bs Decays into χ_{c} may also be useful

Spare slides

Bs->f0 form factors

TABLE III. $\quad B_{s} \rightarrow f_{0}(980)$ form factors at $q^{2}=0$. Results evaluated by CLFD/DR [27], PQCD [28] and QCDSR [29] approaches are collected for a comparison.

	CLFD/DR	PQCD	QCDSR	This work
$F_{1}(0)$	$0.40 / 0.29^{\mathrm{a}}$	$0.35_{-0.07}^{+0.09}$	$0.12 \pm 0.03^{\mathrm{c}}$	0.185 ± 0.029
$F_{T}(0)$		$0.49_{-0.08}^{+0.0}$	$-0.08 \pm 0.02^{\mathrm{c}}$	0.228 ± 0.036

$0.35 * 0.18 / 0.37=0.17$	$0.12 * 0.37 / 0.18 *(0.209 / 0.231)=0.22$
$0.40 * 0.18 / 0.37=0.19$	$0.08 * 0.37 / 0.18 *(0.209 / 0.231)=0.15$

[27] B. El-Bennich, O. Leitner, J. P. Dedonder, and B. Loiseau, Phys. Rev. D 79, 076004 (2009).
[28] R.H. Li, C. D. Lu, W. Wang, and X. X. Wang, Phys. Rev. D 79, 014013 (2009).
[29] N. Ghahramany and R. Khosravi, Phys. Rev. D 80, 016009 (2009).

a2:PQCD vs factorization

f0(980), ssbar?

The quark content of f_{0} is not uniquely fixed at present. Under the assignment of $\bar{q} q$, this meson might be the mixture of the isosinglet $\bar{n} n$ and $\bar{s} s(n=u, d)$. The mixing angle could be fixed using other experimental data for instance $J / \psi \rightarrow \phi f_{0}$ and $J / \psi \rightarrow \omega f_{0}$:

$$
\mathcal{B}\left(J / \psi \rightarrow \phi f_{0}\right)=(3.2 \pm 0.9) \times 10^{-4}, \quad \mathcal{B}\left(J / \psi \rightarrow \omega f_{0}\right)=(1.4 \pm 0.5) \times 10^{-4},
$$

These data indicate a portion of nonstrange content for f_{0} and the branching fraction of $B_{s} \rightarrow J / \psi f_{0}$ might be reduced by roughly 30%. Nevertheless this feature does not limit the power to search for the new physics, since its BR is still large enough to be accessible.

