Heavy Flavour production at RHIC

Sonia Kabana

SUBATECH and University of Nantes, France

QCD@Work, Martina Franca, Italy, 20-23 june 2010

Outline

- Introduction
- Open heavy flavor
 - Charm mesons: D⁰
 - Non-photonic electrons
- Quarkonia
 - J/ψ and Υ measurements

Relativistic Heavy Ion Collider

RHIC site in BNL on Long Island, USA

The STAR Detector

Probing of Dense Matter with jets

p+p Collision

Au+Au Collision

Average number of NN collisions in AA collision

- No "Effect" of nuclear matter:
 - $R_{AA} = 1$ at higher momenta where hard processes dominate
- Suppression: R_{AA} < 1
- Partons interact with medium gluon radiation/energy loss
- measuring high-p_T particles in Au+Au vs. p+p to extract the properties of medium

Light hadron R_AA in central Au+Au at 200 GeV

• R_AA of u,d,s hadrons is strongly suppressed in central Au+Au at 200 GeV

• Large energy loss of u,d,s partons in the medium

Energy loss depends on properties of medium (gluon densities, size) properties of "probe" (color charge, mass)

What is the flavour dependence of hadron suppression?

Heavy quarks as a probe

- p+p data:
- \rightarrow baseline of heavy ion measurements
- → test of pQCD calculations

 Due to their large mass heavy quarks are primarily produced by gluon fusion in early stage of collision
→ production rates calculable by pQCD
M. Gyulassy and Z. Lin, PRC 51, 2177 (1995)

•heavy ion data:

Studying energy loss of heavy quarks
→ independent way to extract properties of the medium

Open heavy flavor

Direct: reconstruction of all decay products $D^0 \rightarrow K^- \pi^+, \overline{D}^0 \rightarrow K^+ \pi^-,$ $B.R. = 3.80 \pm 0.07\%$

Indirect: charm and beauty via electrons

 $\begin{array}{l} c \rightarrow e^{+} + anything \quad (B.R.: 9.6\%) \\ b \rightarrow e^{+} + anything \quad (B.R.: 10.9\%) \\ issue of photonic background \\ \quad \ \ charm \ (and \ beauty) \ via \ muons \\ c \rightarrow \mu + + anything \ (B.R.: 9.5\%) \end{array}$

Direct D-meson reconstruction at STAR

• $K\pi$ invariant mass distribution in d+Au, Au+Au minbias, Cu+Cu minbias at 200 GeV collisions

First D secondary vertex reconstruction using the STAR silicon detectors ongoing

A. Geromitsos, (STAR coll.), CIPANP2009

Measurement of charm STAR

STAR charm measurement:

- D⁰ in d+Au, Au+Au, Cu+Cu 200GeV
- + low \textbf{p}_{T} muon in Au+Au 200GeV
- non-photonic electrons in p+p, d+Au, Cu+Cu, Au+Au 200GeV
- 90% of charm total kinematic range covered

Measurement of charm PHENIX

Open Charm Cross-section

 Large discrepancy between extracted total cross-section from STAR and PHENIX

lootect

Resolution of the Phenix-STAR discrepancy New STAR high pT NPE Measurements in 200GeV p+p collisions

W. Xei et al (STAR), DIS2010 ✓ pT>2.5GeV/c NPE measurement with dramatically different background agree with each very well

JUUGLECH

Comparison with the Published NPE Results

STAR and PHENIX NPE result in 200GeV p+p collisions ✓ Are consistent within errors at pt > 2.5 GeV/c STAR NPE results are consistent with FONLL in 200GeV p+p collisions

Large suppression of Non-Photonic-Electrons

A Adare et al, PHENIX, arXiv:1005.1627

Thick dashed line: BDMPS (D,B)->e Upper band: DGLV (D<B)->e radiative dedx Lower band: DGLV collisional+rad. dedx

Thin dashed curves: DGLV only D->e+X

NPE R_AA puzzle: Larger suppression (c+b) than expected for radiative dedx/dead cone effect

Adding collisional dedx improves agreement

Van Hees et al PRL100 (2008) 192301

Dedx by elastic scattering mediated by resonance excitation of D and Blike states in the medium

Describes ~ both R_AA, v2(NPE)

R AA(NPE) and v2(NPE)

Collisional dedx+

running coupling constant,

Greco et al: c flow assumes v2(c)=v2(u,d)

no c flow assumes v2(c)=0

Zhang et al: HIJING+(parton cascade)+(hadron cascade) for two charm quark scattering cross sections

Van Hees et al: resonant interaction in strongly interacting QGP and parton coalescence of c,b --> Reduction or flatening of v2 at high pT requires b contribution

Resonances required at low pT

v2(NPE) A Adare et al, PHENIX, arXiv:1005.1627

R_AA(NPE) suppression and sizable v2(NPE) :

Heavy quarks lose energy in the medium, while acquiring a substantial component of the medium's collective flow

Compare v2(NPE) to the expected v2(D) from coalescence production.

pT< 2 GeV to be sensitive only to c and not b

chi² for v2(c) vs v2(u)

both normalized to measured v2(u)

calculated from measured v2(light quarks) and v2(NPE)

 \rightarrow v2(c) ~ v2(u)

 \rightarrow the coalescence assumption for D seems supported

 \rightarrow indicates common quark collectivity

Disentangle c and b with e-D0 correlations

See talk of A Geromitsos, STAR collaboration, tuesday

Bottom contribution to electron spectrum

- Difficult to interpret suppression without the knowledge of charm/bottom
- Data show non-zero **B contribution** consistent with FONLL
- Charm and bottom contribution comparable at $p_{\scriptscriptstyle T}$ of 5 GeV
- B meson is also suppressed

Johnstech

Quarkonia

Quarkonia: Thermometer of QGP through hierarchy of T(dissociation)

Many effects play a role: dissociation in QGP - cold matter absorbtion - recombination/coalescence from c, cbar - heavy resonances ...

The "RHIC J/ ψ puzzle" : y-dependence

- Suppression doesn't increase with local density
 - R_{AA} (|y|<0.35) > R_{AA} (1.2<|y|<2.2)
 - R_{AA} (RHIC, |y|<0.35) ≈ R_{AA} (SPS)

R_AA is < 1 also for low N_part where J/Psi (meas./expect) of NA50 was = 1

--> need to correct R_AA for cold nuclear matter effect like done by NA50 with p+A

RHIC J/Psi "y"-puzzle

ubatech

T Frawley, (PHENIX) workshop ECT*,Trento, May 24-29 2009

Analysis of d+Au data of run 2009 in terms of sigma_abs to account for all nuclear matter effects

→sigma_abs increases from midrapidity to forward rapidity

→ Agreement of J/Psi R_AA/R_AA(Cold N uclear Matter) at y=0 and y=1.75

The J/Psi RHIC-SPS-comparison -puzzle

J/ ψ suppression at low p_T maybe from excited stats (ψ ', χ_c) F. Karsch, D. Kharzeev and H. Satz, PLB 637, 75 (2006); B. Alessandro et al. (NA50), Eur. Phys. J. C 39 (2005) 335; R. Arnaldi et al. (NA60), Quark Matter 2005; PHENIX: Phys.Rev.Lett.98, 232301,2007. 60% of all J/Psi comes from direct J/ ψ . While 30% of all J/Psi come from χ_c and 10% ψ ' χ_c and ψ ' T(dissociation) ~Tc, while J/Psi T(dissociation)~ 2.1 T_c

--> suppression of J/Psi observed, maybe due to χ_{c} and ψ^{\prime} dissociation

--> directly produced J/Psi may not be suppressed at all at RHIC

--> expect more suppression at LHC due to direct J/Psi dissociation

(but must account for c,cbar coalescence-> J/Psi)

J/Psi assumed completely suppressed and resurrected by c,cbar "coalescence"

A Andronic et al, Phys Lett B 652 2007, p 259

-J/Psi is assumed to be completely suppressed at RHIC

- R_AA(J/Psi) is then estimated for the process of c, cbar coalescence to J/Psi, within a thermal model

→This estimate agrees withR_AA(J/Psi) at RHIC

→ It predicts a great enhancement of R_AA(J/Psi) at LHC

J/ψ in p+p and Cu+Cu 200 GeV

- R_{AA}(p_T>5 GeV/c) = 1.4± 0.4±0.2
- Consistent with no suppression at high $\ensuremath{\textbf{p}_{\text{T}}}$
- A. Adil and I. Vitev, Phys.Lett. B649, 139 (2007), S. Wicks et al., Nucl. Phys. A784, 426 (2007)
- Inconsistent with AdS/CFT+Hydro and "heavy resonance" models
- -Two component model+J/ ψ form. time+ B feed down describes the trend well

R. Rapp, X. Zhao, nucl-th/0806.1239

STAR Y measurements in p+p

Υ signal in d+Au 200 GeV collisions

• Strong signal (8σ significance) extracted

 $R_{dAu} = 0.98 \pm 0.32 \text{ (stat.)} \pm 0.28 \text{ (sys.)}$

• Consistent with N_{bin} scaling of cross-section p+p \rightarrow d+Au 200GeV

Upsilons in p+p

Upsilons Suppressed in Au+Au - PHENIX

Conclusions

* Large R_AA and flow of NP electrons in central Au+Au collisions at 200 GeV Heavy quarks lose energy in the medium, while acquiring a substantial component of the medium's collective flow

* e-h, e-D0 correlations : In p+p at 200 GeV c~b contribution at pT ~5 GeV
c/b contribution in p+p is consistent with FONLL
b is also suppressed in Au+Au at 200 GeV

* J/Psi y-puzzle can be attributed to cold nuclear matter absorbtion :more data needed

* J/Psi sqrt(s) dependence from SPS to RHIC : remains to be understood

Chi_c, psi' suppressed, direct J/Psi not suppressed at RHIC ?

Direct J/Psi also suppressed at RHIC and produced through c,cbar coalescence?

- * High pT J/Psi is consistent with no suppression (Cu+Cu 200 geV)
- * Y measured in p+p, d+Au, Au+Au

Outlook

* 2009/2010 STAR run with full TOF , low material -> improve c,b ID

* Both Phenix and STAR plan for silicon vertex detector upgrades to measure Heavy Flavour with great accuracy

--> Heavy Flavour substantial element of RHIC plans

STAR Heavy Flavour Tracker : ~2014

Thank you very much

PHENIX forward muons

• Factor 4 larger yield than FONLL at low p_T

PHENIX J/ ψ in p+p 200 GeV

• both mid and forward results well described by the s-channel cut Color Singlet Model (CSM)

$R_AA(b) vs R_AA(c)$

Conclusions

Charm measurement at RHIC Three different channels: D⁰ , µ, electrons

- Large non-photonic electron suppression (R_AA)
- Bottom relative contribution consistent with FONLL
- Strong high-p_T suppression in Au+Au
- Heavy quark energy loss not fully understood
- J/Psi
 - Consistent with no suppression at high- p_T

Upsilon

- Cross section measurement in p+p and dAu
- Follows N_{bin} scaling

R_u,d,s,c,b) vs pT

Wicks et al, Nucl. Phys. A784 (2007) 426

Suppression of non-photonic electrons

- · Large suppression of non-photonics electrons similar to hadrons
- No satisfactory theoretical description yet

Central Au+Au 200GeV

Joatech

$$R_{AA}(p_t) = \frac{1}{N_{coll}} \times \frac{dN_{AA} / dp_t}{dN_{pp} / dp_t}$$

e-D0 azimuthal correlations

High-p_T J/ ψ - hadron correlations

• Near-side correlation due dominantly to $\dot{B} \rightarrow J/\psi + X$

• B-meson feeddown to inclusive J/ ψ production of **13%± 5%**

at $p_T > 5$ GeV/c.

protons vs pions

- Color charge dependence: g/q ($C_A/C_F = 9/4$)
- Gluons loose more energy than quarks
- At high-p_T protons are produced mainly from gluon jets
- At high-p_T pions are produced mainly from quark jets

=> Expected $R_{AA}(g \rightarrow p) < R_{AA}(q \rightarrow \pi)$

$$\langle \Delta E \rangle \sim \alpha_s C < \hat{q} > L^2$$

Color screening and sequential suppression of quarkonia

30% χ_{c} and 10% $\psi^{\prime}:$ dissociated

