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Introduction

Astrophysical observations vs theory of dense matter

Astrophysics provides unique ways to learn about the properties of dense matter
Dense matter may be trapped by gravitational well of a compact star for very long
periods of time (compared to terrestrial experiments). However, the experiment
comes “as it is” and cannot be manipulated.

@ Need to develop methods and tools to extract information
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Introduction

Stressed pairing

Initially isospin symmetric matter acquires d-quark excess via the inverse -decay
e+ u— d + v, this implies shift in the Fermi spheres of by amount pe = pg — pu:

@ Standard BCS requires

the numbers to be equal, BCS: k=-kppu=0 FOMMNIETRICHERTE == 3 =@

coherence is optimal

among the fermions "‘

bound in a Cooper pair q.
@ Asymmetric BCS, shifted

Fermi surfaces, i

coherence is destroyed Rot. und Trans. Symmetrisch Rot, Trans. Sym., Zeitumkehr gebroch
@ LOFF phase, Finite LOFF: k+P=-k'du#0  DFS phase: k~Kk, 3u#0

momentum of the
condensate, restores
coherence. Simplest
ansatz

A(F) = A exp(if - G).
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Introduction

Astrophysical observations vs theory of dense matter

The phase diagram
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Introduction

Equations of state
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@ The nuclear equation of state is taken from covariant BHF theory with two
parameterizations (both stiff)

@ The two quark equation of states differ by pressure normalization in the vacuum
(slight vertical shift)




Constructing stellar configurations

Stellar configurations

Mass vs central density
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Constructing stellar configurations

Stellar configurations

M-R relation
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Gravity wave

Gravitation radiation

Two independent polarization of GW; perturbations of metric hjj = theijr + hxe|?j<.
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Weak field limit, linearized GR equations, g,,, = nu» + huw, hy perturbation
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Ohy, =0, hyy =hpw — Emwh (1)




Gravity wave

Gravitation radiation

LIGO is sensitive to GW emitting by rotating NS, which is at 2Q2, e.g. Crab pulsar
Q ~ 30Hz.
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Gravity wave

Gravitation radiation

Given a deformation the characteristic strain amplitude:
167m2G el z1/?
ho = 2
0= g @)
e = (Ix — lyy)/lz is the equatorial ellipticity. Strain amplitude can be expressed in
terms of the m = 2 mass quadrupole moment as
_ 16r°G (32m\ V% Qu? ®
o~ " \15 ro
Quadrupole moment
Reore drr3 | 3 1 \/§ 1 r du
= — | =(4— Uty + =(6— U)t Z(8-3U+ZU2———)t.|, (4
Q22 /0 g(r){z( )rr+3( ta + 2( =5 3dr>”‘ )
where U = 2 + dIng(r) /dinr and tr, ty and t;; are the coefficients of the expansion of
the shear stress tensor in spherical harmonics.




Gravity wave

Internal structure
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@ L.-M. Lin, Phys. Rev. D 76, 081502(R) (2007, incompressible models without
nuclear crusts

@ B. Knippel, A. Sedrakian, Phys. Rev. D 79, 083007 (2009), microscopic
equations of state




Gravity wave

Strain amplitudes
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ho can pin down the product o A2, currently GmaxA2 ~ 0.25 MeV?2 (under the
assumptions of the present model).




Neutrinos from quark matter

Neutrinos from quark matter
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Neutrinos from quark matter

Transport of thermal energy

d (Te(p) _ —3kp L.e? ®)

dr 1603 g2, 1 2o
rc2
Energy balance equation

d —47r2 d
T (Le24’> = \/%neqﬁdf. (6)

L is the total luminosity (neutrino + photon)

dr’ Le?Pe
o R 0
{nc\,dvp
The gradients of neutrino luminosity
Re
d > 472 o o o
T (L,,e2 ): 726rnne2 v, L% :/nql,e2 dVp. (8)
Vi-%& 0
Combination gives
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Neutrinos from quark matter

Cooling processes

Quark cores of NS emit neutrons via
d—ut+e+ve Ut+te—d+re (10)

The rate of the process (emissivity) is given through
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Neutrinos from quark matter
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Fast vs slow cooling in standard models with fast cooling agent



Neutrinos from quark matter
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Neutrinos from quark matter
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Central density 2.1 x 105 g cm—3 various ¢.



Neutrinos from quark matter

Conclusion

@ Gravitationally stable hybrid star configurations can be constructed. Hybrid stars
are massive with M ~ 1.8 — 2.0M¢ with radii R ~ 12 km.

@ The internal structure reveals quark core M < 1.Mg and radius Reore ~ 7 — 8 km.

@ |If the quark core is solid, the gravitational radiation amplitudes are within the
range of current upper limits set for the Crab pulsar.

@ Cooling of hybrid quark star shows consistency with the current data on surface
temperatures of neutron stars. Cooler stars need to have quark cores.
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