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The purpose is to explore a nonperturbative method that can be used
to solve for the bound states of quantum field theories, in particular
QCD. The problem is notoriously difficult and there are only a few
approaches.

4 lattice gauge theory
M4 transverse lattice

Y Dyson—Schwinger equations

Y4 Bethe—Salpeter equation

M4 sector-dependent renormalization
X4 PV-regulated light-front Hamiltonian
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Simple models with a heavy fermion which can emit and absorb
S.J. Brodsky, J.R. Hiller, and G. McCartor, Pauli—Villars as
ultraviolet regulator in discretized light-cone quantizatio
(1998).

S.J. Brodsky, J.R. Hiller, and G. McCartor, A
and discretized light-cone quantization to
60, 054506 (1999).

Yukawa theory (QED with
S.J. Brodsky, J.R. Hill
and discretized lig
theory, Phys.
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yields unphysical limit but check for numerical calculation;
al-time states that correspond to simple light-front Fock

Cartor, Exact solutions to Pauli-Villars-regulated

I

A. Paston, and E.V.
's magnetic moment, Nucl.

Pauli-Villar.

Contribution of zero-
S.S. Chabysheva and J.R. |
quantization, Phys. Rev. D




Truncation extended to two photons:
S.S. Chabysheva and J.R. Hiller, A nonp
magnetic moment with truncation e

D, April 2010, arXiv:0911.4455[h

Comparison of two
S.S. Chabysheva
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Chosen in order to have well-defined Fock-sta
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with a much larger mass. This can be

icles to the Lagrangian. For example,













The Feynman-gauge QED Lagrangian, regulated by two PV photons
and one PV electron, is




The & must satisfy constraints:
o physical charge, £ =1
o cancellation of the log divergence, ZZQ:O(—l)lfl =0
o correct chiral limit,

2 2
MMy 2 ) = 0
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The second constraint guarantees a zero norm for the sum of the
boson fields.

The third constraint is trivially satisfied in the limit of infinite PV
mass mj.
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The coupling of the two zero-norm fields A* and v as the interaction
term reduces the fermionic constraint equation to a solvable equation
without forcing the gauge field A_ = A™ to zero.
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For the null combination 1)y + 1 that couples to A", the constraint
reduces to
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Without antifermion terms, the Hamiltonian is
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Note absence of instantaneous fermion contributions.
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Can solve analytically [NPB 703, 333 (2004)].
The dressed-electron state with total J, = i% i
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Project onto the physical subspace by expressing Fock states in terms of pos-
itively normed creation operators and the null combinations aL = \/&aju

and b} = bgs 4+ bis that are dropped:
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From Hyc|w) = M?|) we have
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The integrals I and J satisfy an identity, J = M?21,,.
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From the Brodsky—Drell formula [PRD 22, 2236 (1980)] for the spin-
flip matrix element of the electromagnetic current
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The anomalous moment of the electron in units of the Schwinger term
(a/27) plotted versus the PU photon mass, 1, for afeto valhues of the PYU
electron mass, m,, toith the second PY photon mass, po, setto infinity
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The strong dependence on myq, in the us — oo limit, arises from the
sensitivity of the anomalous moment integral to the masses of the con-
stituents, in particular the bare electron mass mg. The leading finite-
my correction to the bare electron mass is of the form %ﬁzl)
This requires m; to be much larger than u2 /m.. Such behavior comes
from the contribution of I; to the relationship between mg and « in

the one-photon truncated solution.
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If we now add the second PV photon, we obtain
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We then choose &; such that the second term is zero.




The anomalous moment of the electron in units of the Schwinger term
(a/2 ) plotted versus the PY photon mass, 111 for pe = /241
This vatio held fired as p1 and pg ave varied
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The equation in the three-body sector can be solved for the three-body wave

functions in terms of the two-body wave functions.
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Substitution of this solution into the two-body equation eliminates the
three-body wave functions. Retain only the self-energy contributions,
where the emitted photon is immediately reabsorbed by the electron,
and omit the remaining two-photon contributions, where one photon
is emitted and the other absorbed.
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The two-body equation can be expressed compactly as
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Substitute the expressions for the two-body wave functions into the
one-body equation
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Yields a as a function of mg and the PV masses. Then find mq such that
« takes the physical value.
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One-photon result — differs by ~ 17%.
With self-energy — consistent with perturbative QED.
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That the self-energy contribution brings
the result so close to the leading
Schwinger contribution can be under-
stood.

The denominator of the integral that
yields the anomalous moment con-
tains mZ plus the self-energy correc-
tion, which for the dominant contribu-
tion near zero photon momentum be-
comes just m2.

This is the mass that appears in the
Schwinger expression.







THE EQUATTON FOR ITWO-PARTICLE AMPLITUDES ONLY
48 coupled integral equations
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Flavor changing self-energies leads naturally to a fermion flavor mixing of
the two-body wave functions.
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The wave functions that diagonalize the left-hand side are
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The eigenvalue problem is
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JZ‘;S is implicitly a functional of these new wave functions.

The original wave functions are recovered as
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Again « is a function of mg and PV masses. Find iteratively a value for mg
such that « takes its physical value.







Convert integral equations to matrix eigenvalue problem by discretization.
Solve matrix problem by Lanczos iteration:
Uy — Ups1 such that

Hiy = by 1Un—1 + aplin + bpliny1,

aq b1 0
bl ag b2

H—T= 0 by as

and diagonalize T

Search for mg with iterative Miiller algorithm, which uses quadratic fit and
interpolation for next guess.
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Open questions for QED:

Y4 inclusion of an electron-positron pair would be very interesting.
The renormalization of the electron charge would need to be
re-examined, both because of vacuum polarization contributions
and because covariance of the current may be restored, at least
partially.

Y4 analysis of true bound states, such as positronium, would also be
interesting as further tests of the method.

In none of these cases is the nonperturbative analysis likely to produce
results competitive with high-order perturbation theory; the numeri-
cal errors are large compared to the tiny perturbative corrections in a
weakly coupled theory such as QED, but in a strongly coupled theory,
such as QCD, the method will be more quantitative.




X4 the PV-regulated formulation by Paston et al.

Y the analog of the dressed-electron problem does not exist and the
minimum truncation that would include non-Abelian effects
would be to include at least two gluons. The smallest calculation
would then be in the glueball sector.

in the meson sector, the minimum truncation would be a

quark-antiquark pair plus two gluons, which as a four-body
problem would require discretization techniques beyond what are
discussed here. One would discretize the coupled integral
equations directly and diagonalize a very large but very sparse
matrix.

as an intermediate step, model the meson sector with effective
interactions, particularly with an interaction to break chiral
symmetry.
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