

Observation of high-pt jet production in p p at $\sqrt{s} = 7$ TeV

Stephanie Majewski, Brookhaven National Laboratory, on behalf of the ATLAS Collaboration

QCD@Work, June 20-23, 2010 *Martina Franca, Italy*

Introduction

LHC and ATLAS performance
Jet reconstruction and calibration

Outline: Introduction Event Displays Results

LHC and ATLAS Performance

Subdetector	Number of Channels	Approximate Operational Fraction
LAr EM Calorimeter	170 k	98.5%
Tile calorimeter	9800	97.3%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%

ATLAS Calorimeters

Trigger and Vertexing

Minimum Bias Trigger Scintillator (MBTS), $2.09 < |\eta| < 3.84$ (mounted on the LAr endcap cryostat) **Trigger:**ATLAS-CONF-2010-025minimum bias inclusive triggerrequire ≥ 1 scintillator hit on
either side above thresholdcollision event: |t| < 7.5 ns

Vertex Requirement:

at least 1 vertex with |z| < 10 cm

 suppresses beam-related bkg and cosmic rays

negligible impact from pileup (< 0.2%)

Jet Reconstruction: Constituents

* Topological Clusters:

- * seeded from cells with $|E_{cell}| > 4\sigma$; "4-2-0 scheme"
 - (σ = RMS of cell energy noise distribution)
- evolution in 3 dimensions
- excellent noise suppression

η

Jet Reconstruction: Algorithm

* <u>anti-k_T algorithm</u>:

- sequential combination algorithm
- * iterative procedure to combine proto-jets
- * search for min(d_{ij},d_{ii}):
 - * if d_{ij} is smaller, recombine (i,j)
 - * if d_{*ii*} is smaller, jet *i* is final

$$d_{ij} = \min\left(p_{T,i}^{-2}, p_{T,j}^{-2}\right) \frac{\Delta_{ij}^2}{R^2}$$

$$\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

R = {0.4, 0.6} typically

- * theoretically clean (IR, collinear safe)
- FastJet implementation

Jet Calibration

- * Jet p_T corrected on average from EM scale to hadronic scale using a MC-based calibration (p_T, η)
- * Preliminary studies show an absolute jet energy scale uncertainty of $\pm 7\%$
 - calorimeter p_T response in different rapidity regions known to ± 5%
 - * E/p from in situ isolated tracks matched to topological clusters
 - calorimeter measurements and test beam results establish absolute scale

Data Quality and Preselection

QCD@Work 2010

* Run and Event Requirements:

- * stable beam flag from the LHC
- calorimeter fully operational with nominal performance
- event timing consistent with collisions

* <u>Jet Veto</u>:

- single noisy cells in the hadronic endcap region (largest effect)
- jets from bad quality calorimeter pulses
- * out-of-time deposits

events with ≥ 1 "bad" jet, $p_T > 10 \text{ GeV}$ (EM scale) are removed

S. Majewski

Event Displays

• Jet events at $\sqrt{s} = 7$ TeV

Highest p_T Dijet Event

Results

- Inclusive jet production
- Dijet distributions
- Internal jet structure
- Charged particle flow

Comparison of Data with MC

 $p_T^{\rm jet} > 30 \,{\rm GeV} \,{\rm and} \, |y^{\rm jet}| < 2.8$

* Pythia dijet Monte Carlo sample (LO matrix element + parton shower),

- * ATLAS MC09 tune, MRST LO* PDFs, full GEANT4 simulation
- * All kinematic distributions normalized to unity
 - * comparisons are sensitive to shape differences
- Data/MC distributions compared at reconstruction level (not unfolded)
- * Only statistical uncertainties are shown

MC provides a reasonable description of the data

Dijet Mass and $\Delta \phi$ Distribution

* ~20% of the selected jet events are dijet events

Differential Jet Shape

- * $\rho(r)$ is the average fraction of jet p_T within an annulus
 - * $p_T = \Sigma$ topocluster $|\vec{p}_T|$ in that annulus
 - relatively insensitive to jet energy scale

ATLAS-CONF-2010-043

Charged Particle Flow

Summary

 High-p_T jets have been observed in the ATLAS detector with the first 1 nb⁻¹ of 7 TeV p p collisions from the LHC

* p_T^{jet} up to ~500 GeV and m_{JJ} up to ~900 GeV

- * Shapes of jet kinematic distributions reasonably described by the fully-simulated Pythia dijet MC sample
- * Jet internal structure studied through differential jet shapes
- * Charged particle flow confirms calorimeter-based results
- * The LHC continues to deliver...
- ➡ Jet cross-section measurements will be reported later this summer