

CMS - first results

CMS Experiment at the LHC, CERN

Data recorded:	2010
Run:	1324
Event:	Isti
Lumi section.	139
Orbit:	3620
Contraction	

D10-Mar-30 11:04:33 Paolo 3 Checchia 32440 tituto Nazionale di Fisica Nucleare

sez. di Padova

Padova, Italy

Ha, T-Triggers

 M.
 Акану, Респисатори

 H.
 1.5.000 (славание)

 <

f_L1_H#Bech T_L1Tech_HCAL_H#_concidence_FM

for the CMS collaboration

QCD@Work - International Workshop on QCD - Theory and Experiment

planda (v) diarana (v) diarana (v)

Contents

- LHC and CMS
- Detector performance
- QCD Physics results
 - Charged particle multiplicity and p_t spectra
 - Bose Einstein Correlation
 - Angular correlations
 - Underlying Events
 - Diffraction (just approved) +.....
- Conclusions

After 2009 startup (0.9 TeV and few 2.36 TeV data) with first Physics results

2010-2011 Physics program: ~1 fb⁻¹ at 7 TeV c.m.

started successfully

CMS: Integrated Luminosity 2010

One step towards these goals is for the LHC to run smoothly with bunches at the design intensity, that is, with 1.1×10^{11} protons per bunch. The first collisions at 3.5 TeV between bunches at this intensity were achieved successfully..., but in order for collisions at this intensity to become a routine operation, the LHC teams need to continue development work.

We have therefore decided, to focus fully on the beam development work for at least the coming week.

All subdetectors working properly!!! >99% of detector channels operational

Physic results from the very early data Paolo Checchia - CMS first results

20/06/2010

INFN

Istituto Nazionale

The CMS Hadron Forward Calorimenter

covers the range $2.9 < |\eta| < 5.2$ ~11 m from interaction point Steel – Cherenkov quartz fiber Fast readout η, ϕ segmentation of 0.175x0.175

Embedded Beam Scintillation Counters (BSC) used to trigger on collision events

20/06/2010

Detector performance

Istituto Nazionale di Fisica Nucleare

Excellent detector performance: a few examples Tracker

CMS

Detector performance

INFN

Istituto Nazionale di Fisica Nucleare

$Z \rightarrow e^+e^-$ CANDIDATE

Physics results

•Charged particle multiplicity and p_t spectra JHEP 02 (2010) 041, arXiv:1005.3299: 0.9, 2.36, 7 TeV Bose-Einstein correlations 0.9, 2.36 TeV arXiv:1005.3294 Angular correlations CMS PAS QCD-10-002 (2010): 0.9, 2.36, 7 TeV Underlying event CMS PAS QCD-10-001 (2010): 0.9, 2.36 TeV Diffraction

HLT_LL_BecklinblauchP_BptrPuscCRMnus HLT_LL_BucklinblauchP_BptrPuscCRMnus_NgBPTX ACCa_EcaPhiCsym HLT_LL_HPbech HLT_LTPrch_HCAL_HP_connoidence_PM MLT_ACTIvech HCAL_HP_connoidence_PM

CMS PAS FWD -10-001:

0.9, 2.36 TeV

Physics results

Minimum bias trigger and selection

Collision events are selected from BSC BPTX (Beam Pick-up Timing for experiments)*

Collisions:

BSC and BPTX coincidence in both sides+

Rejection of beam halo and beam background

Some analyses use only Non single Diffractive (NSD) events selected requiring at least one tower with E>3 GeV in each side of HF

INFN

* two detectors at 175 m from i.p. to measure the beam presence

*1st CMS paper (2009 data), 7 TeV accepted by PRL

Single pixel

Count pixel hits in single layer Pixel size ∞ |sinh η |

Down to 30 MeV p_t

short clusters (loopers, sec.) removed

but

Does not measure p_t

Need MC to subtract secondaries, decays etc.

η

Tracklets

Pair hits from different pixel layers and

look for compatibility along η , ϕ Subtract background using $\Delta \phi$ sidebands (1<| $\Delta \phi$ |<2)

Down to 50 MeV p_t

but

Does not measure p_t

Need MC for acceptance, to subtract secondaries, decays, pixel splitting etc.

Tracks

Iterative algorithm ≥ 3 hits in pixel + strips compatibility with primary vertex

low fake rate (ghosts < 1%)

Measure p_t

but

No low p_t (>100 MeV)

Sensistive to alignment, beam spot

Results

Results obtained with the three methods for NSD events compatible within the errors

averaged results compared ALICE and UA5. Systematic uncertainties mainly coming from trigger, event selection, reconstruction efficiencies ~5%

Charged particle multiplicity and pt spectra

Energy dependence

Steep multiplicity increase at 7 TeV

Significantly higher than most event generator prediction

•BEC gives information on the size of the primary source

•*R* is expressed in term of particle pair *Q* value: $Q = \sqrt{M_{\pi\pi}^2 - 4m_{\pi}^2}$

• and parametrized as:

 $R(Q) = C[1 + \lambda \Omega (Qr)](1 + \delta Q)$

• Ω is the Fourier transform of the spatial distribution of the emission region (static models)

- $\bullet\,\lambda$ is the BEC strength for boson emission from independent sources
- r is the radius of the emission source
- δ accounts for long range Q correlations

 $R(p_1p_2) = \frac{P(p_1, p_2)}{P(p_1)P(p_2)}$

$$R(Q) = \left(\frac{dN_{signal} / dQ}{dN_{reference} / dQ}\right)$$

several parametrization for $\Omega(Qr)$: exponential e^{-Qr} , Gaussian $e^{-(Qr)^2}$...

Istituto Nazionale

INFN Istituto Nazionale di Fisica Nucleare

 $\frac{\left(\frac{dN_{signal}/dQ}{dN_{reference}/dQ}\right)}{\left(\frac{dN_{MC,signal-like}/dQ}{dN_{MC,reference}/dQ}\right)}$

 $\mathcal{R} = \frac{1}{R_{MC}} = \frac{1}{R_{MC}}$

Double ratio

In order to reduce the bias due to the reference sample construction a double ratio \mathcal{R} is defined:

Improves fit quality

Reduces r.m.s. spread among results

INFN Listituto Nazionale di Fisica Nucleare

Combined reference sample*

The parameters of the correlation function

were obtained using a "combined " reference sample

r.m.s. from each individual fit provides the systematic error contribution

Results

900 GeV

- $\lambda = 0.625 \pm 0.021_{stat} \pm 0.046_{sys}$
- $r = 1.59 \pm 0.05_{stat} \pm 0.19_{sys}$

2.36 TeV

 $\lambda = 0.662 \pm 0.073_{stat} \pm 0.048_{sys}$

 $r = 1.99 \pm 0.18_{stat} \pm 0.24_{sys}$

*results from all the ref. samples are given

Exponential form describe the data much better than the Gaussian one

Dependencies and comparisons

- r grows with N_{ch}
- λ slight decrease
- **Consistent with previous measurements**

For comparison, CMS result scaled: $r_G = r/\sqrt{\pi}$

Istituto Nazionale

•Clusters characterized by: "size": number of particle in cluster "width": angular separation between particles

•Quantitative comparison with model prediction

I N F N

Istituto Nazionale di Fisica Nucleare

The method
 Signal events

$$R(\Delta\eta, \Delta\phi) = \left\langle (N-1) \left(\frac{S_N(\Delta\eta, \Delta\phi)}{B_N(\Delta\eta, \Delta\phi)} - 1 \right) \right\rangle_N$$
 Reference sample (uncorrelated: mixed events)

Fit $\Delta \eta$ projections in the near ($\Delta \phi < \pi/2$) and far ($\Delta \phi > \pi/2$) sides with a Gaussian function f ($\Delta \eta$)=K_{eff} exp[-($\Delta \eta$)²/(4 δ^2)] Measure size (K_{eff}) and width (δ)

CMS

stituto Nazionale

- At (L)HC the "hard" parton scattering accompanied by:
- •Additional "soft" interactions among beam partons (Multi Parton Interactions)
- •Hadronization of non interacting beam partons (Beam Beam Remnants)
- •Products of MPI and BBR form Underlying Event
- •UE knowledge crucial for MC tuning, precision SM measurements and searches bejond SM
- Starting from leading track (jet)"
- •"Toward" ($|\Delta \phi| < 60^{\circ}$): hard interaction
- •"Away" ($|\Delta \phi| > 120^{\circ}$): recoiling jet
- •"Transverse" dominated by UE

NFN

INFR INFR Istituto Nazionale di Fisica Nucleare

measurement

Track selection: $|\eta| < 2$, $p_t > 0.5$ GeV Hard parton: track/jet with $p_t > 1/2/3$ GeV

•In toward and away regions, high activity due to radiation and to the fragmentation of the two outgoing partons

•Non-null activity in transverse region is attributed to UE

•No Pythia tune models accurately the data CW and DW closest description

- UE activity (multiplicity and average momentum) increases with leading jet / leading track p_t
- Slower increase for jet p_t>4 GeV (track p_t>3 GeV)
- Well-reproduced by simulation (data between CW and DW tunes)
- **Bands are statistical+systematic errors (material budget, background contamination, selection)**

INFN Istituto Nazionale di Fisica Nucleare

Comparison with MC

Models fail to represent the data (absolute values and trends)

These measurements allow for a better MC tuning

Data/MC ratio

Diffraction

Istituto Nazionale di Fisica Nucleare

 $pp \rightarrow XY$ with XY p or low-mass system with $p \sim p_{beam}$. Single Diffractive $pp \rightarrow Xp$

SD: a peak at small $E \pm p_z \propto \zeta$ the proton fractional energy loss (diffractive cross section goes as $1/\zeta$) and on the HF low Energy and multiplicity

Conclusions

•LHC (re)started providing good quality data •CMS startup with impressive performance •Physic results from the very early data in a fast and efficient way •Soft hadron Dynamics measurements in the new energy domain reveal problems of phenomenological models and allow to tune MC generators in view of hard scattering processing •A long list (~50) of other Physics results coming soon (or just approved) Increasing luminosity could provide competitive results in a short time

Backup slides

Detector performance

Trigger

the low Pt triggers can be validated with MB events.

Detector performance

Ecal

Paolo Checchia - CMS first results

Coulomb correction

18

Istituto Nazionale

Coulombian interactions between pairs of charged particles affect the low-Q region. Effect is different (of course!) for different-sign and same-sign pairs Can be parametrized by Gamow factors: $W_{ss}(\eta) = \frac{e^{2\pi\eta} - 1}{2\pi\eta}, W_{os}(\eta) = \frac{1 - e^{-2\pi\eta}}{2\pi\eta}$

- $(\eta = \alpha_{em} m_{\pi} / Q)$ - Leaving same-charge pairs alone (they are affected by BE correlations in the region where Coulomb interactions act) we may study opposite-charge pairs
- Take the ratio R=dN/dQ(data)/dN/dQ(MC) and compare to inverse of applicable Gamow factor \rightarrow small excess at low-Q, fully understood as coming from Coulomb effect. Note: the MC does not simulate the interaction.

After a correction, data/MC ratio for different-charge pairs becomes flat as expected (ignore wiggles due to ρ region)

Results

Results of fits to 0.9 TeV data					
Reference sample	<i>p</i> value (%)	С	λ	<i>r</i> (fm)	$\delta (10^{-3} { m GeV^{-1}})$
Opposite charge	21.9	0.988 ± 0.003	0.56 ± 0.03	1.46 ± 0.06	-4 ± 2
Opposite hem. same ch.	7.3	0.978 ± 0.003	0.63 ± 0.03	1.50 ± 0.06	11 ± 2
Opposite hem. opp. ch.	11.9	0.975 ± 0.003	0.59 ± 0.03	1.42 ± 0.06	13 ± 2
Rotated	0.02	0.929 ± 0.003	0.68 ± 0.02	1.29 ± 0.04	58 ± 3
Mixed evts. (random)	1.9	1.014 ± 0.002	0.62 ± 0.04	1.85 ± 0.09	-20 ± 2
Mixed evts. (same mult.)	12.2	0.981 ± 0.002	0.66 ± 0.03	1.72 ± 0.06	11 ± 2
Mixed evts. (same mass)	17.0	0.976 ± 0.002	0.60 ± 0.03	1.59 ± 0.06	14 ± 2
Combined	2.9	0.984 ± 0.002	0.63 ± 0.02	1.59 ± 0.05	8 ± 2
2.36 TeV					

900 GeV

		•	•	
Results	of fits	to 23	36 TeV	data

Results of fits to 2.50 fev data					
Reference sample	<i>p</i> value (%)	С	λ	<i>r</i> (fm)	$\delta (10^{-3} {\rm GeV}^{-1})$
Opposite charge	57	1.004 ± 0.008	0.53 ± 0.08	1.65 ± 0.23	-16 ± 6
Opposite hem. same ch.	42	0.977 ± 0.006	0.68 ± 0.11	1.95 ± 0.24	15 ± 5
Opposite hem. opp. ch.	46	0.969 ± 0.005	0.70 ± 0.11	2.02 ± 0.23	24 ± 5
Rotated	42	0.933 ± 0.007	0.61 ± 0.07	1.49 ± 0.15	58 ± 6
Mixed evts. (random)	23	1.041 ± 0.005	0.74 ± 0.15	2.78 ± 0.36	-40 ± 4
Mixed evts. (same mult.)	35	0.974 ± 0.005	0.63 ± 0.10	2.01 ± 0.23	20 ± 5
Mixed evts. (same mass)	73	0.964 ± 0.005	0.73 ± 0.11	2.18 ± 0.23	28 ± 5
Combined	89	0.981 ± 0.005	0.66 ± 0.07	1.99 ± 0.18	13 ± 4

Paolo Checchia - CMS first results

Results: p_t

CMS,

$$E\frac{d^{3}N_{ch}}{dp^{3}} = \frac{1}{2\pi p_{T}} \frac{E}{p} \frac{d^{2}N_{ch}}{d\eta dp_{T}} = C(n, T, m) \frac{dN_{ch}}{dy} \left(1 + \frac{E_{T}}{nT}\right)^{-n}$$

Tsallis function

Loose dependence on η so fit in the whole range is possible

INFN

Istituto Nazionale di Fisica Nucleare

Diffraction

Experimental details

- Trigger in any BSC counter in coincidence with BPTX
- primary vertex with |z| < 15 cm and $d_t < 2$ cm and > 2 tracks
- beam-halo rejection
- >25% high-quality tracks in events with >10 tracks
- reject HCAL noisy events

