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Gauge invariant Green’s functions

Gauge invariant Green’s functions are expected to provide more
reliable informations about the physical properties of observables than
the gauge variant ones.
For quarks, the gauge invariant two-point Green’s function is defined
as

Sαβ(x, x
′;Cx′x) = −

1

Nc

〈ψβ(x
′)U(Cx′x;x

′, x)ψα(x)〉,

where U is a path-ordered gluon field phase factor along a line Cx′x

joining a point x to a point x′, with an orientation defined from x to x′:

U(Cx′x;x
′, x) ≡ U(x′, x) = Pe

−ig

∫ x′

x

dzµAµ(z)
.
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Green’s functions with paths along skew-polygonal lines are of
particular interest.

For skew-polygonal lines with n sides and n− 1 junction points
y1, y2, . . .,yn−1 between the segments, we define:

S(n)(x, x
′
; yn−1, . . . , y1) = −

1

Nc

〈ψ(x′
)U(x′, yn−1) . . . U(y1, x)ψ(x)〉,

where each U is along a straight line segment.

For one straight line, one has:

S(1)(x, x
′) ≡ S(x, x′) = −

1

Nc

〈ψ(x′)U(x′, x)ψ(x)〉.
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Pictorially:

S(x, x′) ≡ S(1)(x, x
′) = −

1
Nc

< ψ(x′)U(x′, x)ψ(x) >

x x′

S(3)(x, x
′; y2, y1) = −

1
Nc

< ψ(x′)U(x′, y2)U(y2, y1)U(y1, x)ψ(x) >

x x′

y1

y2
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Quark propagator in the external gluon field

A two-step quantization. One first integrates with respect to the quark
fields. This produces in various terms the quark propagator in the
presence of the gluon field. Then one integrates with respect to the
gluon field through Wilson loops.

We use for the quark propagator in extenal field a representation
which involves phase factors along straight lines together with the full
quark Green’s function. Generalization of a representation introduced
by Eichten and Feinberg, 1981, for heavy quarks.
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The quark propagator in the external gluon field is expanded around
the following gauge covariant quantity:

[
S̃(x, x′)

]a
b

≡ S(x, x′)
[
U(x, x′)

]a
b
.

[S(x, x′) is the gauge invariant Green’s function along one straight line
segment.]

Its systematic use leads to the derivation of functional relations
between the Green’s functions S(n) (polygonal line with n segments)
and S (one segment).
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Using then the quark equations of motion and the functional relations
between Green’s functions, one establishes the following integrodiffe-
rential equation for the Green’s function S(x, x′):

(iγ.∂(x)−m)S(x, x′) = iδ4(x−x′)+iγµ
{
K2µ(x

′, x, y1)S(2)(y1, x
′;x)

+
∞∑

n=3

Knµ(x
′, x, y1, . . . , yn−1)S(n)(yn−1, x

′;x, y1, . . . , yn−2)
}
,

where the kernel Kn contains globally n derivatives of Wilson loops
with skew-polygonal contours and also the Green’s function S and its
derivative.

The Green’s functions S(n) themselves are related to the simplest
Green’s function S with functional relations.
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Interest of the quark gauge invariant Green’s function

Interest related to its particular status.
If the theory is confining, it is not possible to cut the Green’s function
and to saturate it with a complete set of physical states (hadrons).
Intermediate states are necessarily colored states.
This would suggest that the Green’s function does not have
singularities.
However, the equation that it satisfies, derived from the QCD
Lagrangian, contains singularities generated by the free quark
propagator.
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This paradoxical situation is overcome with the acceptance that the
quarks and gluons continue forming a complete set of states with
positive energies and could be used for any saturation scheme of
intermediate states. It is up to the theory to indicate to us at the end
how the related singularities combine to form the complete solutions.

Therefore, the knowledge of the gauge invariant quark Green’s
function provides us a direct information about the effect of
confinement in the colored sector of quarks.
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Spectral functions

Green’s functions with paths along straight lines are dependent only
on the end points of the paths. The transition is then simple to
momentum space by Fourier transformation.

It is then advantageous to consider the path-ordered phase factor U
in its representation given by the formal series expansion in terms of
the coupling constant g.

Using for each term of the series, together with the quark fields, the
spectral analysis with intermediate states and causality, one arrives
at a generalized form of the Källén–Lehmann representation for the
Green’s function S in momentum space, in which the cut starts on the
real axis from the quark mass squared m2 and extends to infinity.
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S(x, x′) = S(x− x′) =

∫
d4p

(2π)4
e−ip.(x− x′) S(p).

S(p) has the following representation in terms of real spectral
functions ρ(n)

1 and ρ(n)
0 (n = 1, . . . ,∞):

S(p) = i

∫ ∞

0

ds′
∞∑

n=1

[
γ.p ρ

(n)
1 (s′) + ρ

(n)
0 (s′)

]

(p2 − s′ + iε)n
.
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Two-dimensional QCD

Many simplifications in two-dimensional QCD at large Nc. In two
dimensions, Wilson loop averages are exponential functionals of the
areas of the surfaces enclosed by the contours. At large Nc, crossed
diagrams and quark loop contributions disappear. (’t Hooft, 1974.)

Equation of S with the lowest-order kernel becomes an exact
equation. In two dimensions, the second-order derivative of the
logarithm of the Wilson loop average is a delta-function.

(iγ.∂ −m)S(x) = iδ2(x) − σγµ(gµαgνβ − gµβgνα)x
νxβ

×
[ ∫ 1

0

dλλ2S((1 − λ)x)γαS(λx) +

∫ ∞

1

dξS((1 − ξ)x)γαS(ξx)
]
.
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S(p) = γ.pF1(p
2) + F0(p

2).

S(x) =
1

2π

(iγ.x
r
F̃1(r) + F̃0(r)

)
, r =

√
−x2.

One obtains two coupled equations. Their resolution proceeds
through several steps, based mainly on the spectral representation and
the related analyticity properties.
We assume that the series of spectral functions sum up, by means of
integrations by parts, into single terms.
The equations can be solved explicitly.
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The covariant functions F1(p
2) and F0(p

2) are:

F1(p
2
) = −i

π

2σ

∞X

n=1

bn
1

(M2
n − p2)3/2

,

F0(p
2
) = i

π

2σ

∞X

n=1

(−1)
nbn

Mn

(M2
n − p2)3/2

.

The threshold singularities or branch points M2
1 , M

2
2 , . . . , M

2
n, . . . are labelled

with increasing values with respect to the index n; in particularM1 > m.

For large n:

M
2
n ≃ σπn, bn ≃

σ2

Mn

, for σπn ≫ m
2
.

In x−space:

eF1(r) =
π

2σ

∞X

n=1

bne
−Mnr, eF0(r) =

π

2σ

∞X

n=1

(−1)
n+1bne

−Mnr.
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Asymptotic behaviors:

F1(p
2) =

|p2|→∞

i

p2
,

F0(p
2) =

|p2|→∞

im

p2
, m 6= 0,

F0(p
2) =

|p2|→∞

2iσ

Nc

〈ψψ〉

(p2)2
, m = 0.

15



-0.5

0

0.5

1

1.5

2

-20 -15 -10 -5 0

iF
0

p2

16



0

1

M2
1 M2

2 M2
3 M2

4 M2
5 M2

6 M2
7

R
e
(i

F
0
)

p2

17



Conclusion

1) The spectral functions are infrared finite and lie on the positive real
axis of p2. No singularities in the complex plane or on the negative real
axis have been found. =⇒ Quarks contribute with positive energies.

2) The singularities are represented by an infinite number of
threshold type singularities, characterized by positive masses Mn

(n = 1, 2, . . .). The corresponding singularities are stronger than
simple poles and this feature might prevent observability of quarks as
free particles.

3) The threshold masses Mn represent dynamically generated
masses and maintain the scalar part of the Green’s function at a
nonzero value.
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