Recent results on charm and charmonium from BaBar.

Antimo Palano INFN and University of Bari representing the BaBar Collaboration

\Box Outline:

- Introduction: Charm and charmonium spectroscopy at B-factories.
- Selected recent results:
 - Charm: Search for CP violation in D^0 decays.
 - Charmonium: Observation of $\gamma \gamma \rightarrow \chi_{c2}(3940) \rightarrow D\bar{D}$.
 - Charmonium: Observation of $X(3872) \rightarrow J/\psi\omega$.
 - Charged Charmonium?

QCD@Work 2010 - Beppe Nardulli memorial workshop - Martina Franca, Italy, June 20-23

Introduction. Charm physics at BaBar. Integrated luminosity.

□ The Standard Model allows for CP violation in Cabibbo Suppressed *D* decays at level of ≈ 0.1 %. □ $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ is the CS decay having the largest branching fraction and four different decay particles.

 \Box Using momenta of the decay particles calculated in the D^0 rest frame, we define the triple product correlations C_T and \overline{C}_T as:

$$C_T \equiv \vec{p}_{K+} \cdot (\vec{p}_{\pi+} \times \vec{p}_{\pi-}), \qquad \overline{C}_T \equiv \vec{p}_{K-} \cdot (\vec{p}_{\pi-} \times \vec{p}_{\pi+})$$

□ The product is odd under time-reversal (T) and, assuming the *CPT* theorem, *T*-violation is a signal for *CP*-violation. □ We evaluate:

$$A_T \equiv \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)}$$

 \vec{p}_{K^+N}

where Γ is the decay rate for the process. \Box Strong interaction dynamics can produce a non-zero value of the A_T asymmetry, even if the weak phases are zero. \Box Defining as \overline{A}_T the *T*-odd asymmetry measured in the *CP*-conjugate decay process

$$\overline{A}_T \equiv \frac{\Gamma(-\overline{C}_T > 0) - \Gamma(-\overline{C}_T < 0)}{\Gamma(-\overline{C}_T > 0) + \Gamma(-\overline{C}_T < 0)}$$

we can construct:

$$\mathcal{A}_{\mathcal{T}} = \frac{1}{2} (A_T - \overline{A_T})$$

Which is a true T violating process.

 \Box Using 470 fb⁻¹, we study the reaction (arXiv:1003.3397, accepted by Phys. Rev. D (RC)):

$$e^+e^- \to XD^{*+} \to \pi^+_s D^0 \to K^+K^-\pi^+\pi^-$$

 $\Box \text{ We require } p^* > 2.5 \text{ GeV/c and remove } D^0 \to K^0_S K^+ K^-.$ $\Box \text{ We define } \Delta m \equiv m(K^+ K^- \pi^+ \pi^- \pi^+_s) - m(K^+ K^- \pi^+ \pi^-), \text{ and plot the 2-D distribution} (m(K^+ K^- \pi^+ \pi^-)) \text{ vs } \Delta m:$

\Box Data split in 4 C_T different subsamples. Projections in the D^{*+} cut.

Subsample	Events
(a) $D^0, C_T > 0$	10974 ± 117
(b) $D^0, C_T < 0$	12587 ± 125
(c) $\overline{D}^0, \ \overline{C}_T > 0$	10749 ± 116
(d) $\overline{D}^0, \overline{C}_T < 0$	12380 ± 124

\Box Systematic uncertainties in units of 10^{-3} .

Effect	$\mathcal{A}_{\mathcal{T}}$	A_T	\overline{A}_T
1. Alternative signal PDF	0.2	0.3	0.2
2. Alternative misreconstructed D^0 PDF	0.5	0.1	0.9
3. Bin size	0.2	0.4	0.3
4. Particle identification	3.5	4.2	2.9
5. $p^*(D^0)$ cut	1.7	1.6	2.4
6. $\cos \theta^*$ dependence	0.9	0.0	0.2
7. Fit bias	1.4	3.0	0.3
8. Mistag	0.0	0.0	0.0
9. Detector asymmetry	1.1	2.1	0.0
Total	4.4	5.8	3.9

\Box We obtain:

$$A_T = (-68.5 \pm 7.3_{\text{stat}} \pm 5.8_{\text{syst}}) \times 10^{-3},$$

$$\overline{A}_T = (-70.5 \pm 7.3_{\text{stat}} \pm 3.9_{\text{syst}}) \times 10^{-3}$$

 \Box Final state interactions effects have an important role in these decays.

 \Box The result for the *CP* violation parameter, \mathcal{A}_T , is:

$$A_{T} = (1.0 \pm 5.1_{\text{stat}} \pm 4.4_{\text{syst}}) \times 10^{-3}$$

 \Box Consistent with zero. However the Sensitivity reached by Babar with this technique falls in a region where *CP* violation could start to show up.

 \Box Summary of the *CP* violation searches using different techniques: Direct, Dalitz analysis, *CP* violation in Mixing, and finally T-odd correlations.

Belle(2005)		$D^0 \rightarrow K^+ \pi^- \pi^0$
Belle(2005)	•	$- D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$
Belle(2007)	····	$\mathrm{D}^0 ightarrow \pi^+\pi^-$
Belle(2007)		$\mathrm{D}^0 \to \mathrm{K}^+\mathrm{K}^-$
BaBar(2008)		$\mathrm{D}^0 ightarrow \pi^+\pi^-$
BaBar(2008)	H	$D^0 \to K^+ K^-$
BaBar(2008)	•• ••	$\mathrm{D}^0 ightarrow \pi^+\pi^-$
BaBar(2008)		$D^0 \to K^+ K^-$
Belle(2008)	HH	$\mathrm{D}^0 ightarrow \pi^+\pi^-$
Belle(2008)	H- - -H	$D^0 \rightarrow K^+ K^-$
Belle(2008)	F	$D^0 \rightarrow \pi^+ \pi^- \pi^0$
BaBar(2008)		$D^0 \rightarrow \pi^+ \pi^- \pi^0$
BaBar(2008)		$D^0 \rightarrow K^+ K^- \pi^0$
BaBar(2010)	F +	$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$
10 -8 -6 -4	-2 0 2	4 6 8 1
		A _{CP} (× 10⁻²)

Charmonium physics.

 Charmonium spectroscopy is expanding a lot after the
 B-factories discoveries
 of many new charmonium states.

□ Not clear if all these states can be accomodated in the standard quark model.

Charmonium physics at B-factories.

 \Box Charmonium physics is studied using several processes.

Observation of $\gamma\gamma \rightarrow Z(3930)$.

 \Box Two-photon collisions are a rich source of charmonium states.

 \Box At B-factories the two scattered electrons are not detected and therefore q is small and the photons are quasi-real. Yang's theorem forbids the production of spin-1 states.

 \square Belle first observed the $\chi_{c2}(2P)(3930)$ candidate in

 $\gamma\gamma
ightarrow Dar{D}.(ext{Phys.Rev.Lett.96:082003,2006})$

 \Box We search for this state in BaBar with 384 fb⁻¹ using the following

 $D\overline{D}$ decay modes.(Phys. Rev. D 81, 092003, 2010)

Chan	nel	D decay mode	\overline{D} decay mode
N4	$D^0\overline{D}^0$	$D^0 \rightarrow K^- \pi^+$	$\overline{D}^0 \to K^+ \pi^-$
N5	$D^0 \overline{D}{}^0$	$D^0 \rightarrow K^- \pi^+$	$\overline{D}^0 \to K^+ \pi^- \pi^0$
N6	$D^0 \overline{D}{}^0$	$D^0 \rightarrow K^- \pi^+$	$\overline{D}^0 \to K^+ \pi^- \pi^- \pi^+$
N7	$D^0 \overline{D}{}^0$	$D^0 \to K^- \pi^+ \pi^+ \pi^-$	$\overline{D}^0 \to K^+ \pi^- \pi^0$
C6	$D^{+}D^{-}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	$D^- \rightarrow K^+ \pi^- \pi^-$

$\begin{array}{c} q_1 \\ \gamma_1^* \\ q_2 \\ \gamma_2^* \\ e^{- \frac{1}{2}} \\ e^{-\frac{1}{2}} \\$

\Box D signals.

Observation of $\gamma\gamma \rightarrow Z(3930)$.

 \Box Since the scattered electrons have high momentum and small angles, the $\gamma\gamma \to D\bar{D}$ final state is evidenced by the balance of p_t , the $D\bar{D}$ transverse momentum.

 \Box Distribution of $p_t(D\overline{D})$. The fitted lineshape consists of the expected $\gamma\gamma$ lineshape obtained from MC plus a linear background (dotted line).

 \Box The histogram shows the shape of the $p_t(D\overline{D})$ distribution from simulated $D^*\overline{D}$ events with missing π^0 or γ .

 \Box The weighted efficiency is defined as:

$$\epsilon^{B}(m(D\overline{D})) = \frac{5}{2} \frac{\sum_{i=1}^{5} N_{i}(m(D\overline{D}))}{\sum_{i=1}^{5} \frac{N_{i}(m(D\overline{D}))}{\epsilon_{i}^{B}(m(D\overline{D}))}}$$

where $N_i(m(D\overline{D}))$ is the number of $D\overline{D}$ candidates for channel *i*, and:

$$\epsilon_i^B(m(D\overline{D})) = \epsilon_i(m(D\overline{D})) \times \mathcal{B}_i$$

where ϵ_i is the efficiency and \mathcal{B}_i is the branching fraction for channel i.

Observation of $\gamma\gamma \rightarrow Z(3930)$.

 \Box Efficiency-corrected $D\overline{D}$ mass distribution. The dashed curve shows the background lineshape.

 \Box The mass and total width of the Z(3930) state are measured to be:

 $m = (3926.7 \pm 2.7(\text{stat}) \pm 1.1(\text{syst})) \text{ MeV}/c^2$ $\Gamma = (21.3 \pm 6.8(\text{stat}) \pm 3.6(\text{syst})) \text{ MeV}$

 \Box Fitted using a relativistic Breit-Wigner convoluted with a mass dependent resolution function.

□ Uncertainty on the mass scale 0.9 MeV/ c^2 . □ Statistical significance: 5.8 σ

□ In agreement with the Belle measurements.

Z(3930) angular analysis.

The decay angle θ is defined as the angle of the D meson in the $D\overline{D}$ system relative to the $D\overline{D}$ lab. momentum vector. Entries / 0.

20

15

10

5

0

-5

0

0.2

0.6

0.4

0.8

 $|\cos\theta|$

 \Box Signal yield as a function of $|\cos \theta|$ derived

from fits to the efficiency-corrected $D\overline{D}$ spectrum.

 \Box Solid: spin 2 with dominating helicity-2 contribution.

 \Box Dotted straight line is for spin 0.

 \Box The preferred assignment for spin and parity of the Z(3930) state is therefore $J^{PC} = 2^{++}$.

 \Box Assuming spin J = 2, the product of the branching fraction to $D\overline{D}$ times the two-photon width of the Z(3930) state is:

$$\Gamma_{\gamma\gamma} \times \mathcal{B}(Z(3930) \to D\overline{D}) = (0.24 \pm 0.05(\text{stat}) \pm 0.04(\text{syst})) \text{ keV}$$

 \Box The parameters obtained are consistent with the expectations for the $\chi_{c2}(2P)$ state.

New results on X(3872).

 \Box The X(3872) was discovered by Belle in B decays and confirmed by BaBar, D0, and CDF. $\Box J/\psi \pi^+\pi^-$ mass spectra from B decays associated to a charged and neutral kaon.

$$B^{\pm} \to J/\psi \pi^{+} \pi^{-} K^{\pm} \qquad \qquad B^{0} \to J/\psi \pi^{+} \pi^{-} K^{0}_{S}$$

□ Angular analysis from CDF favours $J^{PC} = 1^{++}$ and 2^{-+} . □ X(3872) observed in $J/\psi\pi^+\pi^-$, $J/\psi\gamma$, $\psi(2S)\gamma$, and $D^{*0}\bar{D}^0$. Therefore C=+1.

Study of $B \to J/\psi \omega K$.

 \square BaBar: New analysis of $B \to J/\psi \pi^+ \pi^- \pi^0 K$.

 \Box Study of charged and neutral B decays. Fit the m_{ES} distribution in slices of $m_{3\pi}$.

 $\square m_{3\pi}$ distribution for $B^+ \to J/\psi \pi^+ \pi^- \pi^0 K^+$.

 \Box Clear η and ω signals.

 \Box Extend to a lower limit the cut on the mass of the $\omega.$

 \Box The corrected $m_{J/\psi\omega}$ distribution for (a) B^+ , (b) B^0 decays;

(c)(inset) shows the low-mass region of (a) in detail.

Study of $B \to J/\psi \omega K$.

 \Box For the X meson, (4 σ significance), the fitted mass is:

$$m_X = 3873.0^{+1.8}_{-1.6}$$
(stat) ± 1.3 (syst) MeV/ c^2

 \square Mass and width values for the Y meson are:

$$m_Y = 3919.1^{+3.8}_{-3.4}$$
(stat) ± 2.0 (syst) MeV/ c^2

$$\Gamma_Y = 31^{+10}_{-8} (\text{stat}) \pm 5 (\text{syst}) \text{ MeV}$$

□ The $m_{3\pi}$ distribution for events with 3.8625 $< m_{J/\psi\omega} < 3.8825$ GeV/ c^2 for B^+ , B^0 , and the combined distribution. □ The solid (dashed) histogram represents reconstructed MC *P*-wave (*S*-wave) events normalized to the number of data events.

 \Box Branching fraction:

 $\frac{B(X \to J/\psi\omega)}{B(X \to J/\psi\pi^+\pi^-)} = (0.7 \pm 0.3(B^+)), (1.7 \pm 1.3(B^0))$

□ The inclusion of one unit of orbital angular momentum in the $J/\psi\omega$ system improves the description of the data. □ This in turn implies negative parity for the X meson,

and hence $J^P = 2^-$ is preferred (62 % against 7 %).

The charged "charmonium" state Z^+ .

□ Belle: Study of $B \to \psi(2S)K\pi$. □ Dalitz plot: $m^2(\psi(2S)\pi)vs.m^2(K\pi)$. □ Perform cuts on the Dalitz plot through a "K* veto"

 \Box Evidence for a resonance decaying to $\psi(2S)\pi^+$ with the following parameters: $M = 4433 \pm 4 \pm 1 \text{ MeV}$ $\Gamma = 44^{+17}_{-13}(stat)^{+30}_{-11}(sys) \text{ MeV}$

If true: First observation of an exotic non $q\bar{q}$ state.

Still other Z^+ states.

 \square Belle: Study of $B^0 \to \chi_{c1} K^- \pi^+$.

 \Box Dalitz plot analysis: claim for two new states decaying to $\chi_{c1}\pi^+$.

 \Box The masses and widths of the two Z^+ resonances found from the fit are:

 $M_{1} = (4051 \pm 14^{+20}_{-41}) \text{ MeV}/c^{2},$ $\Gamma_{1} = (82^{+21+47}_{-17-22}) \text{ MeV},$ $M_{2} = (4248^{+44+180}_{-29-35}) \text{ MeV}/c^{2},$ $\Gamma_{2} = (177^{+54+316}_{-39-61}) \text{ MeV}$

 \Box Decay of a spin 0 particle through an isobar model:

$$A \to a + R(\to b + c)$$

where R has spin J. Angular momentum conservation and interference produces complex structures on the Dalitz plot.

 \square Not all the structures in the projections are due to resonances.

 $\Box \ \psi K$ mass spectra compatible with absence of any resonance.

 $\Box \text{ Compare } B \to J/\psi K\pi \text{ with } B \to \psi(2S)K\pi.$ $\Box \text{ All the physics along the } K\pi \text{ axis.}$

 \Box Mass spectra fitted using known K^* resonances $(K^*(890), K^*(1430), K\pi$ S-wave).

□ Angular information introduced through the P_L moments (Legendre Polynomials): □ Background subtracted and efficiency corrected. □ $B \rightarrow J/\psi K\pi$ data similar to those from $B \rightarrow \psi(2S)K\pi$.

$$\Box \text{ Where:}
N = S_0^2 + P_0^2 + D_0^2
\langle P_1 \rangle = S_0 P_0 \cos(\delta_{S_0} - \delta_{P_0})
+ 2\sqrt{\frac{2}{5}} P_0 D_0 \cos(\delta_{P_0} - \delta_{D_0})
\langle P_2 \rangle = \sqrt{\frac{2}{5}} P_0^2 + \frac{\sqrt{10}}{7} D_0^2
+ \sqrt{2} S_0 D_0 \cos(\delta_{S_0} - \delta_{D_0})
\langle P_3 \rangle = 3\sqrt{\frac{6}{35}} P_0 D_0 \cos(\delta_{P_0} - \delta_{D_0})
\langle P_4 \rangle = \frac{3\sqrt{2}}{7} D_0^2
\Box S_0 P_0 \text{ and } D_0 \text{ are amplitudes with}$$

 \square S_0 , P_0 , and D_0 are amplitudes with helicity 0.

 \Box The above system cannot be solved directly because of the presence of more unknown quantities than equations.

 \Box The $\psi(2S)\pi$ projections from BaBar and Belle are compatible.

 \square Produce a Monte Carlo weighted by the resonant structure, efficiency, and angular moments.

 \Box The effects on the $J/\psi\pi$ and $\psi(2S)\pi$ mass projections.

b

(d

 $\overline{4.8}$

 \Box Try to introduce a narrow resonance on top of these weighted distributions.

 \square Structures may appear in different regions of the Dalitz plot but not at the positions of the Belle resonance.

 \Box Conclusion: No evidence for $Z^+ \to \psi(2S)\pi^+$. Maximum significance is $\approx 2 \sigma$

Conclusions.

 \Box CP violation in charm is still a foundamental issue. Methods which minimize systematics have been developed such as T-odd correlations.

 \Box This strategy can be fully exploited at LHCB and SuperB.

 \Box CP violation in charm decays is a foundamental probe for New Physics.

 \Box The understanding of the Charmonium spectrum is still to come. Many new results. Room for exotics such as multiquark or hybrid states.

 \square BaBar data analysis still in progress. New results are in preparation for summer conferences.