SURPRISES ON THE X(3872)
 AD Polosa
 INFN Roma

CHARMONIUM LEVELS

WE THOUGHT TO KNEW EVERYTHING ABOUT CHARMONIUM ...

WE THOUGHT TO KNEW EVERYTHING ABOUT CHARMONIUM ...

WE THOUGHT TO KNEW EVERYTHING ABOUT CHARMONIUM ...

Discovery of the $X(3872)$: B decays

August 2003: $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{X} \rightarrow \mathrm{K}^{ \pm} \mathrm{J} / \Psi \pi^{+} \pi^{-}$

::Belle, Phys. Rev. Lett. 91 (2003) 262001 [arXiv:hep-ex/0309032] ::

Discovery of the $X(3872)$: $p \bar{p}$ collisions

September 2003: $\mathrm{p} \overline{\mathrm{P}} \rightarrow \mathrm{X}+\mathrm{all} \rightarrow \mathrm{J} / \Psi \pi^{+} \pi^{-}+a l l$

:: CDF, Phys. Rev. Lett. 93 (2004) 072001 [arXiv:hep-ex/0312021] ::

BaBar and $D \varnothing$ confirm the state

AFTER THE X MANY MORE

state	$M(\mathrm{MeV})$	$\Gamma(\mathrm{MeV}) J^{P C}$	Seen In	Observed by:	Comments	
$Y_{s}(2175)$	2175 ± 8	58 ± 26	$1^{--}\left(e^{+} e^{-}\right)_{I S R}, J / \psi \rightarrow Y_{s}(2175) \rightarrow \phi f_{0}(980)$	BaBar, BESII, Belle		
$X(3872)$	3871.4 ± 0.6	<2.3	$1^{++} B \rightarrow K X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi, \gamma J / \psi, D \bar{D}^{*}$	Belle, CDF, D0, BaBar Molecule?		
$X(3915)$	3914 ± 4	28_{-14}^{+12}	$?^{++} \gamma \gamma \rightarrow \omega J / \psi$	Belle		
$Z(3930)$	3929 ± 5	29 ± 10	$2^{++} \gamma \gamma \rightarrow Z(3940) \rightarrow D \bar{D}$	Belle	$2^{3} P_{2}(c \bar{c})$	
$X(3940)$	3942 ± 9	37 ± 17	$0^{?+}$	$e^{+} e^{-} \rightarrow J / \psi X(3940) \rightarrow D \bar{D}^{*}($ not $D \bar{D}$ or $\omega J / \psi)$	Belle	$3^{1} S_{0}(c \bar{c})$?
$Y(3940)$	3943 ± 17	87 ± 34	$?^{?+}$	$B \rightarrow K Y(3940) \rightarrow \omega J / \psi\left(\right.$ not $\left.D \bar{D}^{*}\right)$	Belle, BaBar	$2^{3} P_{1}(c \bar{c}) ?$
$Y(4008)$	4008_{-49}^{+82}	226_{-80}^{+97}	1^{--}	$\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4008) \rightarrow \pi^{+} \pi^{-} J / \psi$	Belle	
$Y(4140)$	4143 ± 3.1	$11.7_{-6.2}^{+9.1}$	$?^{?}$	$B \rightarrow K Y(4140) \rightarrow J / \psi \phi$	CDF	
$X(4160)$	4156 ± 29	139_{-65}^{+113}	$0^{?+}$	$e^{+} e^{-} \rightarrow J / \psi X(4160) \rightarrow D^{*} \bar{D}^{*}($ not $D \bar{D})$	Belle	
$Y(4260)$	4264 ± 12	83 ± 22	1^{--}	$\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4260) \rightarrow \pi^{+} \pi^{-} J / \psi$	BaBar, CLEO, Belle	Hybrid?
$Y(4350)$	4324 ± 24	172 ± 33	$1^{--}\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4350) \rightarrow \pi^{+} \pi^{-} \psi^{\prime}$	BaBar		
$Y(4350)$	4361 ± 13	74 ± 18	$1^{--}\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4350) \rightarrow \pi^{+} \pi^{-} \psi^{\prime}$	Belle		
$Y(4630)$	$4634_{-10.6}^{+9.4}$	92_{-32}^{+41}	1^{--}	$\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4630) \rightarrow \Lambda_{c}^{+} \Lambda_{c}^{-}$	Belle	
$Y(4660)$	4664 ± 12	48 ± 15	$1^{--}\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4660) \rightarrow \pi^{+} \pi^{-} \psi^{\prime}$	Belle		
$Z_{1}(4050)$	4051_{-23}^{+24}	82_{-29}^{+51}	$?$	$B \rightarrow K Z_{1}^{ \pm}(4050) \rightarrow \pi^{ \pm} \chi_{c 1}$	Belle	
$Z_{2}(4250)$	4248_{-45}^{+185}	177_{-72}^{+320}	$?$	$B \rightarrow K Z_{2}^{ \pm}(4250) \rightarrow \pi^{ \pm} \chi_{c 1}$	Belle	
$Z(4430)$	4433 ± 5	45_{-18}^{+35}	$?$	$B \rightarrow K Z^{ \pm}(4430) \rightarrow \pi^{ \pm} \psi^{\prime}$	Belle	
$Y_{b}(10890)$	$10,890 \pm 3$	55 ± 9	1^{--}	$e^{+} e^{-} \rightarrow Y_{b} \rightarrow \pi^{+} \pi^{-} \Upsilon(1,2,3 S)$	Belle	

From Godfrey arXiv:0910.3409

$$
X \rightarrow \gamma J / \psi \mapsto C=+1 \quad \text { and } \quad X \rightarrow \rho^{0} J / \psi \rightarrow\left(\pi^{+} \pi^{-}\right)_{S} J / \psi \mapsto P=1
$$

Radiative decays

:: BaBar, Phys.Rev.Lett.102:132001,2009. ::

$$
\mathcal{B}\left(B^{ \pm} \rightarrow X(3872) K^{ \pm}\right) \times \mathcal{B}(X(3872) \rightarrow J / \psi \gamma)=(2.8 \pm 0.8(\text { stat }) \pm 0.1(\text { syst })) \times 10^{-6}
$$

:: BaBar, Phys. Rev.D, 77 (2008) 111101 ::

$$
\mathcal{B}\left(B^{ \pm} \rightarrow X(3872) K^{ \pm}\right) \times \mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(8.4 \pm 1.5(\text { stat }) \pm 0.7(\text { syst })) \times 10^{-6}
$$

$$
\frac{\mathcal{B}(X(3872) \rightarrow J / \psi \gamma)}{\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}=(0.3 \pm 0.1)
$$

$$
\Gamma\left(2^{3} P_{1} \rightarrow \psi \gamma\right) / \Gamma\left(2^{3} P_{1} \rightarrow \psi \pi \pi\right) \sim 40
$$

Charmonium predictions: :: Eichten, Lane and Quigg, Phys. Rev. D 69, 094019 (2004) :: :: Barnes and Godfrey, Phys. Rev. D, 69, 054008 (2004) ::

Radiative decays

:: BaBar, Phys.Rev.Lett.102:132001,2009. ::

Charmonium predictions: :: Eichten, Lane and Quigg, Phys. Rev. D 69, 094019 (2004) :: :: Barnes and Godfrey, Phys. Rev. D, 69, 054008 (2004) ::

THE MOLECULE EXPLANATION

A way for accomodating isospin violations is to suppose that $\mathrm{X}(3872)$ is a DD* molecule

$$
|X\rangle=\frac{\left|D^{0} \bar{D}^{0 *}\right\rangle+\left|\bar{D}^{0} D^{0 *}\right\rangle}{\sqrt{2}}
$$

So that one can produce both the $\mathrm{I}=0$ or $\mathrm{I}=\mathrm{I}$ combinations.
In $B \rightarrow K X$ decay indeed can have both

Braaten; Mehen; Swanson; Hanhart;Tornqvist;Voloshin (hadrocharmonium)

THE MOLECULE EXPLANATION

$$
B(X \rightarrow \Psi \rho) / B(X \rightarrow \Psi \omega) \sim 1
$$

A way for accomodating isospin violations is to suppose that $\mathrm{X}(3872)$ is a DD* molecule

$$
|X\rangle=\frac{\left|D^{0} \bar{D}^{0 *}\right\rangle+\left|\bar{D}^{0} D^{0 *}\right\rangle}{\sqrt{2}}
$$

So that one can produce both the $\mathrm{I}=0$ or $\mathrm{I}=\mathrm{I}$ combinations.
In $B \rightarrow K X$ decay indeed can have both

Braaten; Mehen; Swanson; Hanhart;Tornqvist;Voloshin (hadrocharmonium)

HOW LARGE IS A MOLECULE?

Using the indetermination principle

$$
\frac{\hbar^{2}}{2 \mu r_{0}^{2}}-\frac{g^{2}}{4 \pi} \frac{e^{-\frac{m_{\pi} c}{\hbar} r_{0}}}{r_{0}}=\mathcal{E}=M_{D}+M_{D^{*}}-M_{X} \sim 0.25 \mathrm{MeV}
$$

and the fact that $g^{2} / 4 \pi \sim 10$ we have a characteristic size

$$
r_{0} \sim 8 \mathrm{fm}
$$

which could either be infinity(!) as

$$
\mathcal{E}=0.25 \pm 0.40 \mathrm{MeV}
$$

SOME PROBLEMS

- Such a large state must spend part of its time in a very tight configuration to allow $J / \psi \rho$ and $J / \psi \omega$ decays - one can model this but it is difficult to 'reliably' calculate...
- D* has a width of about 70 keV . Why the $\mathrm{X} \rightarrow \mathrm{DD} \pi$ decay rate is ~ 3 MeV then? In other words, which is the mechanism accelerating the D* decay into the molecule?

X PROMPT CROSS SECTION

> At the moment CDF (which has performed the most precise determination of the $\mathrm{X}(3872)$ mass) measures a prompt X production cross section of about $30-70 \mathrm{nb}$.

We find that the prompt production cross section is an important table test of the molecule interpretation.

Bignamini,Grinstein, Piccinini, Polosa, Sabelli Phys Rev Lett 2009

How can a loosely bound state (almost zero binding energy) be poduced in the wild environment of hadronic collisions?

Beppe Nardulli once told me:

 "Sometimes it is more profitable to have important enemies than important friends..."
PROMPT PRODUCTION

$$
\sigma(p \bar{p} \rightarrow X(3872)) \sim\left|\int d^{3} k\left\langle X \mid D \bar{D}^{*}(\mathbf{k})\right\rangle\left\langle D \bar{D}^{*}(\mathbf{k}) \mid p \bar{p}\right\rangle\right|^{2}
$$

$$
\begin{aligned}
& \simeq\left|\int_{\mathcal{R}} d^{3} k\left\langle X \mid D \bar{D}^{*}(\mathbf{k})\right\rangle\left\langle D \bar{D}^{*}(\mathbf{k}) \mid p \bar{p}\right\rangle\right|^{2} \\
& \leq \int_{\mathcal{R}} d^{3} k|\psi(\mathbf{k})|^{2} \int_{\mathcal{R}} d^{3} k\left|\left\langle D \bar{D}^{*}(\mathbf{k}) \mid p \bar{p}\right\rangle\right|^{2} \\
& \leq \int_{\mathcal{R}} d^{3} k\left|\left\langle D \bar{D}^{*}(\mathbf{k}) \mid p \bar{p}\right\rangle\right|^{2}
\end{aligned}
$$

Using Pythia \& Herwig we can compute

$$
\begin{aligned}
& \sigma_{\max }(p \bar{p} \rightarrow X(3872))=\int_{\mathcal{R}} d^{3} k\left|\left\langle D \bar{D}^{*}(\mathbf{k}) \mid p \bar{p}\right\rangle\right|^{2} \\
& \text { where } \quad \mathcal{R} \sim[0.40] \mathrm{MeV} \\
& \text { as } \quad k \sim \sqrt{2 \mu(-0.25+0.40)} \simeq 17 \mathrm{MeV}
\end{aligned}
$$

TUNING MC'S

[The $D^{0} D^{*}$ - pair cross section as function of $\Delta \phi$ at CDF Run II. We find that we have to rescale the Herwig cross section values by a factor $K=1.8$ to best fit the data on open charm production. As for Pythia we need $K=0.74$]

COUNTING PAIRS OVER $5 * 10 * * 9$ SIMULATED EVENTS

Bignamini,Grinstein, Piccinini, Polosa, Sabelli Phys Rev Lett 2009

$$
\sigma_{\mathrm{TH}} \sim 1 / 300 \sigma_{\mathrm{EXP}}
$$

One needs to integrate cross section up to about 205 MeV with Herwig and 130 MeV with Pythia in order to reach the experimental value. We thus EXCLUDE any molecular interpretation of $X(3872)$.

ARE XYZ DIQUARKANTIDIQUARK PARTICLES?

Suppose that $X(3872)$ is a new type of meson with a body-plan different from standard ones, namely a diquark-antidiquark meson

$$
\text { Maiani, Piccinini, Polosa, Riquer Phys Rev D } 2005
$$

A diquark $q q$ has the same color as an antiquark (there is attraction between two quarks in this color channel)

- This would explain easily $\mathrm{J} / \Psi \rho$ and $\mathrm{J} / \psi \omega$ decays
- With a bit more effort it would also explain the observed isospin violations
- $J / \Psi \gamma$ is understood! (only with $4 q$!)

THE MOST CHALLENGING PREDICTIONS

TWO NEUTRAL X are PREDICTED with a separation in mass of few MeV (of the order of $\mathrm{m}_{\mathrm{u}}-\mathrm{m}_{\mathrm{d}}$)

All the mesons (red dots) found in the first table are
NEUTRAL particles whereas the tetraquark model predicts also the existence of CHARGED particles like

$$
\begin{array}{ll}
{[c u][\bar{c} \bar{d}]} & Q=+1 \\
{[c u][\bar{d} \bar{s}]} & Q=+2
\end{array}
$$

Light states like

$$
[u u][\bar{d} \bar{s}] \quad Q=+2
$$

are disfavored as the spin one light diquark is itself disfavored

BUT THEN A NEW PAPER BY BABAR CAME...

arXiv:1005.5190

The quantum numbers of the X are not I^{++}but 2^{-+}!!

This is why we cannot justify the prompt production of X at CDF. There is no I++ (DD*) molecule.

O(200) papers on the molecular interpretation...

THE SIMPLEST QCD STRING

Selem and Wilczek hep-ph/0602I28 (on the Chew-Frautschi model)

Loosely bound (S-wave) molecules cannot have orbital or radial excitations. Two diquarks bound by a string can.

$\mathcal{E}=\frac{m_{1}}{\sqrt{1-\left(\omega r_{1}\right)^{2}}}+\frac{m_{2}}{\sqrt{1-\left(\omega r_{2}\right)^{2}}}+\frac{\sigma}{2 \pi \omega} \int_{0}^{\omega r_{1}} \frac{d v}{\sqrt{1-v^{2}}}+\frac{\sigma}{2 \pi \omega} \int_{0}^{\omega r_{2}} \frac{d v}{\sqrt{1-v^{2}}}$
$\ell=\frac{\omega r_{1}^{2} m_{1}}{\sqrt{1-\left(\omega r_{1}\right)^{2}}}+\frac{\omega r_{2}^{2} m_{2}}{\sqrt{1-\left(\omega r_{2}\right)^{2}}}+\frac{\sigma}{2 \pi \omega^{2}} \int_{0}^{\omega r_{1}} \frac{d v v^{2}}{\sqrt{1-v^{2}}}+\frac{\sigma}{2 \pi \omega^{2}} \int_{0}^{\omega r_{2}} \frac{d v v^{2}}{\sqrt{1-v^{2}}}$
$\sigma \sim 1 \mathrm{GeV}^{2}$ from Regge slopes and $d \mathcal{E}^{\prime} / d r^{\prime}=T=\sigma / 2 \pi \quad$ and $\quad \frac{m_{i} \omega^{2} r_{i}}{1-\left(\omega r_{i}\right)^{2}}=T$

THE SIMPLEST QCD STRING II

Cotugno, Faccini, Polosa, Sabelli Phys Rev Lett 2010
In the limit of infinite (heavy-light) quark mass we find

$$
\mathcal{E}(r)_{\mathrm{TOT}} \simeq \underbrace{2 M+\frac{3}{\left(16 \pi^{2} M\right)^{1 / 3}}(\sigma \ell)^{2 / 3}}_{\mathcal{E}(r) \text { as } T /(M \omega) \rightarrow 0 \quad 2 \mathrm{No} \mathrm{spin-spin} \mathrm{because} \mathrm{of} \mathrm{large} r \text { and } M}+A(\vec{S} \cdot \vec{\ell}) \frac{1}{r} \frac{d}{d r} \mathcal{E}(r)
$$

10.3			
10.1		-	$\Upsilon(1 D)$
9.9	$\equiv x$	$\chi_{b J=0,1,2}$	
9.7	$\mathrm{L}=1$	$\mathrm{L}=2$	

(beauty)

THE NEXT-TO-SIMPLEST QCD STRING

Burns, Piccinini, Polosa, Sabelli -w.i.p.-

$$
\mathcal{E}(r)_{\text {тот }} \simeq \underbrace{2 M+\frac{3}{\left(16 \pi^{2} M\right)^{1 / 3}}(\sigma \ell)^{2 / 3}}_{\mathcal{E}(r) \text { as } T /(M \omega) \rightarrow 0}+A(\vec{S} \cdot \vec{\ell}) \frac{1}{r} \frac{d}{d r} \mathcal{E}(r)+B\left[\vec{S}^{2}-3(\vec{S} \cdot \vec{n})^{2}\right]
$$

D-WAVE BOTTOMONIUM

CHARMONIUM

The situation for charmonium is a bit more tricky since the `infinite` mass limit is less appropriate here.

IS THE X(3872) A ' $\mathrm{D}_{2}\left(2^{-+}\right)$ CHARMONIUM?!

Maybe isospin violations mentioned are not the main problem, but what about radiative decays?
$\mathrm{J} / \Psi \gamma$ and $\mathrm{J} / \Psi \rho$ would be P -wave decays - but then why

$$
\frac{\mathcal{B}(X(3872) \rightarrow J / \psi \gamma)}{\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}=(0.3 \pm 0.1)
$$

FRAGMENTATION OF A GLUON IN A ${ }^{1} \mathrm{D}_{2}$

Cho and Wise hep-ph/94I02I4

$$
\frac{d \sigma}{d p_{\perp}}\left(p \bar{p} \rightarrow 1^{1} D_{2}+\text { All }\right)=\sum_{h=0}^{2} \int_{0}^{1} d z \frac{d \sigma}{d p_{\perp}}\left(p \bar{p} \rightarrow g\left(p_{\perp} / z\right)+\mathrm{All} ; \mu\right) \times D_{g \rightarrow 1^{1} D_{2}^{(h)}}(z ; \mu)
$$

$x \simeq \sqrt{M_{\perp}^{2} / 1960^{2}} \simeq 0.02$
$p_{\perp} \gtrsim 5 \mathrm{GeV}$
$|y| \leq 6$
factorization scale $\mu \simeq M_{\perp}$
Updating the pdf's we find

$$
\sigma\left(p \bar{p} \rightarrow 1^{1} D_{2}\right)=0.6 \mathrm{nb}
$$

ngure 4

Still very small w/ respect to the prompt production at CDF (??)

OUTLOOK

- There are about 20 newly found narrow resonances resembling standard charmonia but often evading the well known charmonium features.
- Belle has observed a $Z^{+}(4430)$ decaying into charmonium + charged pion! This is a highly exotic state. What is it? (A Tetraquark?)
- Are we really observing hadrons with a different `body plan`? We think so.
- More urgently: is the X just D-wave charmonium?

three more (new states

state	$M(\mathrm{MeV})$	$\Gamma(\mathrm{MeV}) J^{P C}$	Seen In	Observed by:	Comments
$Y_{s}(2175)$	2175 ± 8	$58 \pm 261^{--}$	$\left(e^{+} e^{-}\right)_{I S R}, J / \psi \rightarrow Y_{s}(2175) \rightarrow \phi f_{0}(980)$	BaBar, BESII, Belle	
$X(3872)$	3871.4 ± 0.6	$<2.31^{++}$	$B \rightarrow K X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi, \gamma J / \psi, D \overline{D^{*}}$	Belle, CDF, D0, BaBar	Molecule?
$X(3915)$	3914 ± 4	$28_{-14}^{+12} ?^{++}$	$\gamma \gamma \rightarrow \omega J / \psi$	Belle	
Z (3930)	3929 ± 5	$29 \pm 102^{++}$	$\gamma \gamma \rightarrow Z(3940) \rightarrow D \bar{D}$	Belle	$2^{3} P_{2}(c \bar{c})$
X (3940)	3942 ± 9	$37 \pm 17 \quad 0^{?+}$	$e^{+} e^{-} \rightarrow J / \psi X(3940) \rightarrow D \bar{D}^{*}($ not $D \bar{D}$ or $\omega J / \psi)$	Belle	$3{ }^{1} S_{0}(c \bar{c})$?
$Y(3940)$	3943 ± 17	$87 \pm 34 \quad ?^{?+}$	$B \rightarrow K Y(3940) \rightarrow \omega J / \psi\left(\operatorname{not} D \bar{D}^{*}\right)$	Belle, BaBar	$2^{3} P_{1}(c \bar{c})$?
$Y(4008)$	4008_{-49}^{+82}	$226_{-80}^{+97} 1^{--}$	$\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4008) \rightarrow \pi^{+} \pi^{-} J / \psi$	Belle	
$Y(4140)$	4143 ± 3.1	$11.7{ }_{-6.2}^{+9.1} ?^{\text {? }}$	$B \rightarrow K Y(4140) \rightarrow J / \psi \phi$	CDF	
$X(4160)$	4156 ± 29	$139{ }_{-65.113}^{+113} 0^{?+}$	$e^{+} e^{-} \rightarrow J J / \psi X(4160) \rightarrow D^{*} \bar{D}^{*}($ not $D \bar{D})$)	Belle	
$Y(4260)$	4264 ± 12	$83 \pm 22.1{ }^{--}$	$\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4260) \rightarrow \pi^{+} \pi^{-} J / \psi \ldots \ldots \ldots$	BaBar, CLEO, Belle	Hybrid?
$Y(4350)$	4324 ± 24	172 ± 331	$\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4350) \rightarrow \pi^{+} \pi^{-} \psi^{\prime}$	BaBar	
$Y(4350)$	4361 ± 13	$74 \pm 181^{--}$	$\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4350) \rightarrow \pi^{+} \pi^{-} \psi^{\prime}$	Belle	
$Y(4630)$	$4634_{-10.6}^{+9.4}$	$92_{-32}^{+41} 1^{--}$	$\left(e^{+} e^{-}\right)_{I S R} \rightarrow Y(4630) \rightarrow \Lambda_{c}^{+} \Lambda_{c}^{-}$	Belle	
$Y(4660)$	4664 ± 12	$48 \pm 151^{--}$	$\left(e^{+} e^{-}\right)_{\text {ISR }} \rightarrow Y(4660) \rightarrow \pi^{+} \pi^{-} \psi^{\prime}$	Belle	
$Z_{1}(4050)$	$4051-23$	$82_{-29}^{+51} \quad ?$	$B \rightarrow K Z_{1}^{\perp}(4050) \rightarrow \pi^{\perp} \chi_{c 1}$	Belle	
Z_{2} (4250)	42488_{-45}^{+185}	177_{-72}^{+320} ?	$B \rightarrow K Z_{2}^{ \pm}(4250) \rightarrow \pi^{ \pm} \chi_{c 1}$	Belle	
Z (4430)	4433 ± 5	45_{-18}^{+35} ?	$B \rightarrow K Z^{ \pm}(4430) \rightarrow \pi^{ \pm} \psi^{\prime}$	Belle	
$Y_{b}(10890)$	$10,890 \pm 3$	$55 \pm 9 \quad 1^{--} e^{+}$	$e^{+} e^{-} \rightarrow Y_{b} \rightarrow \pi^{+} \pi^{-} \Upsilon(1,2,3 S)$	Belle	

From Godfrey arXiv:0910.3409

TWO ARE THE SAME:Yв

Cotugno, Faccini, Polosa, Sabelli Phys Rev Lett 2010
We just redo the fits using Belle data under the hypothesis that $Y(4660)$ and $Y(4630)$ are the same $\left(I^{--}\right)$particle. This hypothesis improves the fit

