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1 Introduction

• I would like to dedicate this talk to the memory of Professor Giuseppe

Nardulli who, with great kindness and generosity has initiated the long

collaboration I have with members of the Physics Department and INFN

Bari.

• Recent CLEO measurements of χc0,2 two-photon width has renewed

interest in P -wave Heavy Quarkonium decays.

• Two-photon and two-gluon decay rates of S wave quarkonium state

ηc,b can be obtained from the wave function at the origin extracted from

leptonic decay rates of the 1− J/ψ and Υ states using Heavy quark spin

symmetry (HQSS).

• No similar prediction for P wave χc and χb state.

• For P wave heavy quarkonium, the decay rates depends on the

derivative of the wave function which can only obtained from a potential

model in non relativistic bound state calculation.
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• The derivative of the wave function at the origin is obtained in non

relativistic bound state calculation from potential models.

• Need to express the P wave two-photon and two-gluon decay

amplitudes in terms of a heavy quark field local operator extracted from

some known physical processes or computed by QCD sum rules [

Novikov, Okun, Shifman, Vainshtein, and Zakharov (1978); Reinders,

Rubinstein , and Yazaki (1982); Dudek, Edwards and Richards (2006);

Colangelo and Khodjamirian (2001); Colangelo, De Fazio and Pham

(2002), Dudek, Edwards and Richards (2006)] or lattice simulations

[Dudek, Edwards and Richards (2006); Chiu, Hsieh, and Ogawa

(TWQCD Collaboration)(2007)] .

• This work :To derive an effective Lagrangian for the process cc̄→ γγ

by expanding the charm-quark propagator of the cc̄→ γγ annihilation

amplitudes in powers of q2/m2
c , with q = pc − pc̄, and neglecting terms

of O(q2/m2
c) terms.
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• The two-photon decay amplitude for the P -wave heavy quarkonium

χc0,2 given by the matrix element of the heavy quark energy-momentum

tensor which can be expressed in terms of the heavy quark scalar density

c̄c.

• The matrix elements of the heavy quark vector, axial vector, energy

momentum tensor and scalar density operators, like the full decay

amplitude [Barbieri, Gatto, and Kogerler (1976)], be computed in terms

of the derivative of the spatial wave function at the origin using

relativistic spin projection operators [Kuhn, Kaplan and Safiani, 1979;

Kuhn, Guberina, Peccei and Ruckl, (1979)].

• Obtain the corresponding decay constants in terms of the derivative at

the origin of the spatial wave function of the P state.

• Express the decay amplitude in terms of the decay constants of local

operators
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• Our approach: Express directly the decay amplitude in terms of the

corresponding decay constants for these local heavy quark field operator,

as done in short distance operator expansion technique for non-leptonic

weak interactions.
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Figure 1: Diagrams for QQ̄ annihilation to two photons.
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2 Matrix elements of Local operators

• Matrix elements of local operators in a fermion-antifermion system

with a given spin and angular momentum is given by:

A =

∫

d4 q

(2π)4
TrO(q)χ(P, q) (1)

P is the total 4-momentum of the quarkonium system, q is the relative

4-momentum between the quark and anti-quark and χ(P, q) is the

Bethe-Salpeter wave function. This expression is that of Kuhn, Kaplan

and Safiani; Guberina, Kuhn, Peccei and Ruckl (1979).

• For a quarkonium system in a fixed total, orbital and spin angular

momentum χ(P, q) is given by (q is the relative 3-momentum of the

bound state)

χ(P, q;J, Jz, L, S) =
∑

M,Sz

2πδ(q0 − q
2

2m
)ψLM (q) < LM ;SSz|JJz >
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×
√

3

m

∑

s,s̄

u(P/2 + q, s)v̄(P/2− q, s̄) < 1

2
s;

1

2
s̄|SSz >

=
∑

M,Sz

2π δ(q0 − q
2

2m
)ψLM (q)PSSz (P, q) < LM ;SSz|JJz > (2)

The spin projection operators PSSz (P, q) are

P0,0(P, q) =

√

3

8m3
[−(/P/2 + /q) +m]γ5 [(/P/2− /q) +m]

P1,Sz (P, q) =

√

3

8m3
[−(/P/2 + /q) +m]/ε(Sz) [(/P/2− /q) +m] (3)
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3 Effective Lagrangian for χc0,2 → γγ and

χb0,2 → γγ

• From the P -wave part of the cc̄→ γγ, gg and bb̄→ γγ, gg amplitudes:

Leff(QQ̄→ γγ) = −ic1AµνQ̄(
−→
∂ µ −←−∂ µ)γνQ (4)

c1 = −e2Q2
c,b[(k1 − k2)

2/4−m2
Q]−2

With the matrix element of θQµν = Q̄(
−→
∂ µ −←−∂ µ)γνQ between the

vacuum and χc0,2 or χb0,2 given by (Q2 = M2):

< 0|θQµν |χ0 > = T0M
2(−gµν +QµQν/M

2),

< 0|θQµν |χ2 > = −T2M
2εµν . (5)

• The two-photon decay amplitudes are then easily obtained:

M(χ0 → γγ) = −e2Q2
c,b

T0A0

[M2/4 +m2
Q]2

(6)

8



M(χ2 → γγ) = −e2Q2
c,b

T2A2

[M2/4 +m2
Q]2

(7)

where

A0 = (
3

2
)M2(M2ε1 · ε2 − 2ε1 · k2ε2 · k1) (8)

A2 = M2εµν [M2ε1µε2ν − 2(ε1 · k2ε2µk1ν + ε2 · k1ε1µk2ν

+ε1 · ε2k1µk2ν)] (9)

• T2 =
√

3T0 from HQSS.

• For QCD sum rules calculation or lattice simulation, it is simpler to

compute the trace of the energy-momentum tensor θQµµ to obtain the

decay amplitudes.

θQµµ = 2mQQ̄Q (10)

and

v̄(p2)Tµµu(p1) = 2mQv̄(p2)u(p1) (11)

• The problem of computing the two-photon or two-gluon decays of χc0,2

and χb0,2 states is reduced to computing the decays constants fχc0 or
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fχb0 defined as:

< 0|Q̄Q|χ0 >= mχ0fχ0 (12)

• T0 is given directly in terms of fχ0 without using the derivative at the

origin of the P -wave saptial wave function.

T0 =
fχ0

3
(13)

• The decay rates of χc0,2, χb0,2 states can now be obtained in terms of

the decay constant fχ0 .

Γγγ(χc0) =
4πQ4

cα
2
emM

3
χc0

f2
χc0

(Mχc0 + b)4
[1 +B0(αs/π)] , (14)

Γγγ(χc2) =
(

4

15

) 4πQ4
cα

2
emM

3
χc2

f2
χc0

(Mχc2 + b)4
[1 +B2(αs/π)] (15)

where B0 = π2/3− 28/9 and B2 = −16/3 are NLO QCD radiative

corrections.
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• This expression is similar to that for ηc:

Γγγ(ηc) =
4πQ4

cα
2
emMηcf

2
ηc

(Mηc + b)2

[

1− αs

π

(20− π2)

3

]

(16)

• The two-gluon decay rates:

Γgg(χc0) =
(

2

9

) 4πα2
sM

3
χc0

f2
χc0

(Mχc0 + b)4
[1 + C0(αs/π)], (17)

Γgg(χc2) =
(

4

15

)(

2

9

)4πα2
sM

3
χc2

f2
χ0

(Mχc2 + b)4
[1 + C2(αs/π)] (18)

where C0 = 8.77 and C2 = −4.827 are NLO QCD radiative corrections.

• The expression for Γgg(ηc) is similar:

Γgg(ηc) =
(

2

9

) 4πα2
sMηcf

2
ηc

(Mηc + b)2

[

1 + 4.8
αs

π

]

(19)
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• The decay constants in terms of the wave function:

fηc =

√

3

32πm3
Q

R0(0) (4mQ) , (20)

fχ0 = 12

√

3

(8πmQ)

(

R′

1(0)

M

)

(21)

(22)

• In terms of the wave functions, fχc0 = 6
(

R
′

1(0)

R0(0)M

)

fηc and becomes

comparable to fηc .

• Thus by comparing the expression for χc0 and ηc we could already

have some estimate for the χc0 two-photon and two-gluon decay rates.

For fχc0 of O(fηc), one would expect Γγγ(χc0) to be in the range of a

few keV.
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• The decay constants from QCD sum rules : fχc0 = mχ0 g :

fχc0 = 357MeV,Novikov et al

= 510MeV,Colangelo et al (23)

• As shown in Table 1, the predicted two-photon width of χc0 from the

sum rules value for fχc0 is however almost twice the CLEO value, but

possibly with large theoretical uncertainties in sum rules calculation for

fχc0 , as to be expected.

• The measured ratio Γγγ(χc2)/Γγγ(χc0) is then ≈ 0.24± 0.09, somewhat

bigger than the predicted value of about 0.14 as shown in Table 1.
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Reference Γγγ(χc0)(keV) Γγγ(χc2)(keV) R =
Γγγ(χc2)

Γγγ(χc0)

Barbieri 3.5 0.93 0.27

Godfrey 1.29 0.46 0.36

Barnes 1.56 0.56 0.36

Bodwin 6.70 ± 2.80 0.82 ± 0.23 0.12+0.15
−0.06

Gupta 6.38 0.57 0.09

Münz 1.39 ± 0.16 0.44 ± 0.14 0.32+0.16
−0.12

Huang 3.72 ± 1.10 0.49 ± 0.16 0.13+0.11
−0.06

Ebert 2.90 0.50 0.17

Schuler 2.50 0.28 0.11

Crater 3.34 − 3.96 0.43 − 0.74 0.13 − 0.19

Wang 3.78 − −

Laverty 1.99 − 2.10 0.30 − 0.73 0.14 − 0.37

This work 5.00 0.70 0.14

Exp(CLEO) 2.53 ± 0.37 ± 0.26 0.60 ± 0.06 ± 0.06 0.24 ± 0.04 ± 0.03

Exp(Average) 2.31 ± 0.10 ± 0.12 0.51 ± 0.02 ± 0.02 0.20 ± 0.01 ± 0.02

Table 1: Potential model predictions for χc0,2 two-photon widths

compared with this work.
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• CLEO measurements give : (2.53± 0.37± 0.26) keV and

(0.60± 0.06± 0.06) keV for the two-photon width of χc0 and χc2

respectively.

• Ratio of the decay constants:

fχc0 = 6

(

R′

1(0)

R0(0)M

)

fηc (24)

• Two-photon branching ratio for ηc and ηc′ is given by

B(ηc, ηc′ → γγ) =
9

2
Q4

c

α2
em

α2
s

(

1− 8.2
αs

π

)

(25)

with αs evaluated at the appropriate scale.

• This relation gives, Γ(ηc′ → γγ) = (4.1± 2.3) keV.

• Extraction of Γγγ(η′c)
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• Using the Babar measurement of the ratio:

R(ηc(2S)K+/ηcK
+) =

B(B+ → ηc(2S)K+)× B(ηc(2S)→ KK̄π)

B(B+ → ηcK+)× B(ηc → KK̄π)

= 0.096+0.020
−0.019(stat)± 0.025(syst) (26)

and the Belle measurement:

B(B+ → ηcK
+)× B(ηc → KK̄π) = (6.88± 0.77+0.55

−0.66)× 10−5 ,

BABAR Collaboration gives (quoted by CLEO) :

B(η′c → KSKπ) = (1.9± 0.4(stat)± 1.1(syst))% [BABAR] (27)

• which is rather small comopared with:

B(ηc → KSKπ) = (7.0± 1.2)% [PDG] (28)

• With the Babar result for B(η′c → KSKπ) and the CLEO

measurement:

R(η′c/ηc) =
Γγγ(η′c)× B(η′c → KSKπ)

Γγγ(ηc)× B(ηc → KSKπ)
= 0.18± 0.05± 0.02 (29)
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• CLEO Collaboration obtains:

Γ(ηc′ → γγ) = (4.8± 3.7) keV (30)

in agreement with the predicted value Γ(ηc′ → γγ) = (4.1± 2.3) keV

• while the Belle result

R(η′cK/ηcK) =
B(B0 → η′cK

0)× B(η′c → KSK
+π−)

B(B0 → ηcK0)× B(ηc → KSK+π−)
= 0.38±0.12±0.05

(31)

leads to

Γγγ(η′c) = 1.3± 0.6 keV (32)

• Similarly, for χc0,2 :

B(χc0, χc′0 → γγ) =
9

2
Q4

c

α2
em

α2
s

(

1 + (B0 − C0)
αs

π

)

(33)

B(χc2, χc′2 → γγ) =
6

5
Q4

c

α2
em

α2
s

(

1 + (B2 − C2)
αs

π

)

(34)

with B0 = π2/3− 28/9, B2 = −16/3, C0 = 8.77, C2 = −4.827
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• For αs = 0.26, B(ηc → γγ) = 3.6× 10−4 to be compared with the

measured value of (2.8± 0.9)× 10−4(PDG), but this prediction is rather

sensitive to αs: with αs = 0.28, one would get

B(ηc → γγ) = 2.95× 10−4, in better agreement with experiment.

• The predicted and measured BR: with αs = 0.28:

ηc : 2.90× 10−4, (2.4+1.1
−0.9)× 10−4 (35)

χc0 : 3.45× 10−4, (2.35± 0.23)× 10−4 (36)

χc2 : 4.45× 10−4, (2.43± 0.18)× 10−4,

• For ηc and χc0 QCD radiative corrections are important in bringing

the predictions close to experiments.

• For χc2 , QCD radiative corrections give a too large ratio of

two-photon to two-gluon decay rates. Need αs = 0.36 to get the

measured B(χc2 → γγ).

18



• The Z(3930) state with M = (3928± 5± 2)MeV found by Belle

Collaboration : Γγγ(χ′

c2)× B(DD̄) = (0.18± 0.05± 0.03) keV

• Babar Collaboration : Γγγ(χ′

c2)× B(DD̄) = (0.24± 0.05± 0.04) keV

• B(DD̄) ≈ 0.70− 1 [Colangelo; Swanson; Li, Chao]:

Γγγ(χ′

c2) = (0.18− 0.24± 0.05± 0.03) keV

• fχ′

c0
' 195− 225MeV. This implies Γgg(χ

′

c0) in the range 5− 10MeV.

• For χb0,2 potential model calculation gives the two-photon width about

1/10 of that for ηb , which implies fχb0 = fηb
/3, smaller than Cornell

potential value fχb0 = 0.46 fηb
.
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4 Conclusion

• Effective Lagrangian approach and HQSS can be used to compute

quarkonium decays into lepton and photon with relativistic kinematic.

• Babar measurement of B(η′c → KSKπ) allows an extraction

Γγγ(η′c) = (4.8± 3.7) keV in good agreement with the predicted value of

(4.1± 2.3) keV.

• For χc0 and χb0, existing sum rules calculation for fχc0 however

produces a two-photon width about 5 keV, somewhat bigger than the

CLEO measurement.

• It remains to be seen whether a better determination of fχc0 could

bring the χc0,2 two-photon decay rates closer to experiments or higher

order QCD radiative corrections and relativistic corrections are needed

to explain the data.
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• The measured ηc and χc0,2 two-photon branching ratios require

αs ≈ 0.28 , far bigger than the value of αs ≈ 0.19 from J/ψ → ggg

[Kwong, Mackenzie, Rosner(1988); Voloshin (2008)].

• Relativistic corrections should be small for χb0,2. Two-photon and

two-gluon decays could be used to test QCD predictions and

determination of αs at the χb0,2 mass.
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