

Studies of charmed hadronic B-decays with the early LHCb data and prospects for γ

Jacopo Nardulli

On behalf of the LHCb collaboration

Science and Technology Facility Council Rutherford Appleton Laboratory

QCD@Work 2010

→ The CKM picture of CP violation is well established, but there are still possibilities for new physics in precision measurements of the Unitarity Triangle


```
Angles precision limited by
experiments:

\rightarrow \sigma(\alpha) \sim 5^{\circ}

\rightarrow \sigma(\beta) \sim 1^{\circ}

\rightarrow \sigma(\gamma) \sim 20^{\circ}

(B<sub>s</sub> system less tested)

\rightarrow \sigma(\phi_s) poorly determined
```


b-hadron decays offer sensitivity to a wide range of NP			
Rare decays	Observations or BR limits	$B_s \rightarrow \mu^+\mu^-$	
	Angular analysis	B _d → K [*] μ ⁺ μ ⁻	
	Radiative penguins in b → sγ transitions	$\begin{array}{ccc} B_{d} \rightarrow K^{*}\gamma \\ B_{s} \rightarrow \varphi\gamma \end{array}$	

See LHCb roadmap document: arXiv:0912.4179v2

b-hadron decays offer sensitivity to a wide range of NP				
Rare decays	Observations or BR limits	s B _s → μ ⁺ μ ⁻		
	Angular analysis	в _d → к*µ+µ-		
	Radiative penguins in b \rightarrow sy transitions	$B_{d} \rightarrow K^{*}\gamma$ $B_{s} \rightarrow \varphi\gamma$		
CP Violation	Mixing phase β_s	$B_s \rightarrow J/\Psi \phi$		
	CKM angle γ from loop decays	$B_{d} \rightarrow \pi^{+}\pi^{-}$ $B_{s} \rightarrow K^{+}K^{-}$		
	CKM angle γ from tree decays	$B_{g} \rightarrow D_{g}K$ $B_{d} \rightarrow D^{0}K^{*0}; B^{+} \rightarrow D^{0}K^{+}$		
See LHCb roadmap document: arXiv:0912.4179v2				

B-physics at the LHC

Level 0 - High P_T , high E_T , in the muon system and in the calorimeters

HLT1 - Confirms L0 decision by matching L0-object to tracks

HLT2 - Does full reconstruction and loose selections

- Forward spectrometer: pp collisions at the LHC at 14 TeV
- Design luminosity 2*10³²cm⁻²s⁻¹
- Annual integrated luminosity 2fb⁻¹

Day 1 at 7 TeV

Accumulated luminosity

QCD@Work 2010 20-23/6/2010

Rutherford Appleton Laboratory Good agreement between data and MC

Rutherford Apoleton Laboratory

First hadronic B decay B⁻→D⁰(π⁺K⁻)π⁻

Rutherford Appleton Labor Lory rst fully reconstructed B-mesons

γ from trees – GGSZ

Sensitivity to γ from differences in Dalitz plot for B^+ and B^- decays

• Two approaches to the Dalitz analysis

 \rightarrow Unbinned fit using a model for the Dalitz plane. This approach makes full use of the statistics but incurs a systematic uncertainty of between 6° and 15° due to the model assumptions

→ A binned model-independent fit which relies on input from CLEO-c data. Model error replaced by uncertainty on strong phase parameters: 2°. Not full use of the statistics available

γ from trees – GGSZ

QCD@Work 2010 20-23/6/2010

LHCK

- Fit to obtain the best sensitivity to $\boldsymbol{\gamma}$ including all previous methods

```
Statistical sensitivity to \gamma

\rightarrow 4-5° with 2 fb<sup>-1</sup>

\rightarrow 8-10° with 0.5 fb<sup>-1</sup>
```


Conclusions

- LHCb is performing in an excellent way
- Fantastic agreement between MC and Real data so far
- First B-peak is observed
- Looking forward collecting more data
- Hopefully on the 2010/2011 run we'll have
- 1 fb⁻¹ of data

 Most of the LHCb physics program can be done with that statistics

• A "New-physics free" and theoretically clean measurement of γ can be done with a statistical precision of $5\text{-}7^\circ$

Thank you

• I would like to thank the organizers for having dedicated this workshop to the memory of my father

Mode	Yield	B/S
В [±] →D (Кп) К [±]	84k	0.6
$B^{\pm} \rightarrow D_{sup}(K\pi) K^{\pm}$	1.6k	0.6
В⁺ →D (Кппп) К⁺	53k	0.2
В [±] →D _{sup} (Кппп) К [±]	0.55k	3.1
$B^{\pm} \rightarrow D$ (hh) K^{\pm}	11.4k	1.4
В ⁰ →D (Кп) К*	3.2k	0.25
$B^0 \rightarrow D_{sup}(K\pi) K^*$	0.3k	< 10
$B^0 \rightarrow D$ (hh) K [*]	0.4k	< 8

- 10

Rutherford Appleton Laboratory y from trees – ADS/GLW

Sensitivity to γ from time dependent CP asymmetries in B \rightarrow hh $\bar{d}(\bar{s})$ V_{td} PID and mass resolution $\pi^{+}(K^{+})$ crucial for the analysis $B^0 (B^0_s)$ Invariant mass $\pi^{-}(K^{-})$ stinoo d(s)d(s)Loop diagrams sensitive to NP 1000 Measurement of γ in loops could $\Lambda_s \rightarrow p K$ 800 differ from γ in tree diagrams 600 Probability density 400 2fb⁻¹ 0.003 200 5100 5150 5200 5250 5300 5350 5400 5450 5500 0.002 MeV/c² 0.001 Use U-spin symmetry to constrain the problem and extract γ 60 100 150 γ[°]