# PREDICTIONS FOR HEAVY QUARKONIUM AT WEAK COUPLING

Antonio Pineda

Universitat Autònoma de Barcelona (IFAE)

QCD@Work, Juny 20 - 23, 2010

#### Motivation:

- 1st principle computation of heavy quarkonium properties from QCD
- Determination of Standard Model parameters: m<sub>Q</sub>, α<sub>s</sub>, ...

We have an effective field theory, Potential Non-Relativistic QCD, which describes the heavy quarkonium dynamics in the weak and strong coupling situation.  $m \gg mv \gg mv^2$ 

$$\begin{pmatrix} i\partial_0 - \frac{\mathbf{p}^2}{2m} - V_s^{(0)}(r) \end{pmatrix} \Phi(\mathbf{r}) = 0 \\ + \text{corrections to the potential} \\ + \text{interaction with other low} \\ \text{energy degrees of freedom} \end{cases}$$
 potential NRQCD  $E \sim mv^2$ 

In the weak coupling regime the starting point is  $V_s^{(0)} = -C_t \frac{\alpha_s(\mu)}{r}$ . Golden Mode: Bottomonium ground state (?) In the strong coupling regime case

$$V_s^{(0)}(\mathbf{r}) = \lim_{T \to \infty} \frac{i}{T} \log \langle W_{\Box} \rangle$$
 Wilson, Susskind

#### Motivation:

- 1st principle computation of heavy quarkonium properties from QCD
- Determination of Standard Model parameters: m<sub>Q</sub>, α<sub>s</sub>, ...

We have an effective field theory, Potential Non-Relativistic QCD, which describes the heavy quarkonium dynamics in the weak and strong coupling situation.  $m \gg mv \gg mv^2$ 

$$\begin{pmatrix} i\partial_0 - \frac{\mathbf{p}^2}{2m} - V_s^{(0)}(r) \end{pmatrix} \Phi(\mathbf{r}) = 0 + corrections to the potential + interaction with other low energy degrees of freedom }$$
 potential NRQCD  $E \sim mv^2$ 

In the weak coupling regime the starting point is  $V_s^{(0)} = -C_t \frac{\alpha_s(\mu)}{r}$ . Golden Mode: Bottomonium ground state (?) In the strong coupling regime case

$$V_s^{(0)}(\mathbf{r}) = \lim_{T \to \infty} \frac{i}{T} \log \langle W_{\Box} \rangle$$
 Wilson, Susskind

#### Motivation:

- 1st principle computation of heavy quarkonium properties from QCD
- Determination of Standard Model parameters: m<sub>Q</sub>, α<sub>s</sub>, ...

We have an effective field theory, Potential Non-Relativistic QCD, which describes the heavy quarkonium dynamics in the weak and strong coupling situation.  $m \gg mv \gg mv^2$ 

$$\begin{pmatrix} i\partial_0 - \frac{\mathbf{p}^2}{2m} - V_s^{(0)}(r) \end{pmatrix} \Phi(\mathbf{r}) = 0 \\ + \text{corrections to the potential} \\ + \text{interaction with other low} \\ \text{energy degrees of freedom} \end{cases}$$
 potential NRQCD  $E \sim mv^2$ 

In the weak coupling regime the starting point is  $V_s^{(0)} = -C_t \frac{\alpha_s(\mu)}{r}$ . Golden Mode: Bottomonium ground state (?) In the strong coupling regime case

$$V_s^{(0)}(\mathbf{r}) = \lim_{T \to \infty} \frac{i}{T} \log \langle W_{\Box} \rangle$$
 Wilson, Susskind

Which states belong to the weak/strong coupling regime?

To which extent the static potential can be described with perturbation theory

Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, pineda; Brambilla, Garcia, Soto, Vairo; ...

 Which states belong to the weak/strong coupling regime? To which extent the static potential can be described with perturbation theory

Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, pineda; Brambilla, Garcia, Soto, Vairo; ...



PREDICTIONS FOR HEAVY QUARKONIUM AT WEAK COUPLING

- Which states belong to the weak/strong coupling regime? To which extent the static potential can be described with perturbation theory Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, pineda; Brambilla, Garcia, Soto, Vairo; ...
- Spectroscopy at weak coupling

 $M_{\Upsilon(1S)} \longrightarrow m_b(m_b) \sim 4.2$ Beneke, Signer; Brambilla, Sumino, Vairo; Pineda; Lee; ...

- Which states belong to the weak/strong coupling regime? To which extent the static potential can be described with perturbation theory Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, pineda; Brambilla, Garcia, Soto, Vairo; ...
- Spectroscopy at weak coupling

 $M_{\Upsilon(1S)} \longrightarrow m_b(m_b) \sim 4.2$ Beneke, Signer; Brambilla, Sumino, Vairo; Pineda; Lee; ...

- Which states belong to the weak/strong coupling regime? To which extent the static potential can be described with perturbation theory Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, pineda; Brambilla, Garcia, Soto, Vairo; ...
- Spectroscopy at weak coupling

 $M_{\Upsilon(1S)} \longrightarrow m_b(m_b) \sim 4.2$ Beneke, Signer; Brambilla, Sumino, Vairo; Pineda; Lee; ...



 Which states belong to the weak/strong coupling regime? To which extent the static potential can be described with perturbation theory

Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, Pineda; Brambilla, Garcia, Soto, Vairo; ...

Spectroscopy at weak coupling

 $M_{\Upsilon(1S)} \longrightarrow m_b(m_b) \sim 4.2$ Beneke, Signer; Brambilla, Sumino, Vairo; Pineda; Lee; ...

 $\eta_{\mathsf{b}}$ 

Sumino, Recksiegel; Kniehl, Penin, Pineda, Smirnov, Steinhauser (with Renormalization group).

Problems with the recent experimental determination:

theory  $\sim$  40 MeV versus experiment  $\sim$  70 MeV

 Which states belong to the weak/strong coupling regime? To which extent the static potential can be described with perturbation theory

Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, Pineda; Brambilla, Garcia, Soto, Vairo; ...

Spectroscopy at weak coupling

 $M_{\Upsilon(1S)} \longrightarrow m_b(m_b) \sim 4.2$ 

Beneke, Signer; Brambilla, Sumino, Vairo; Pineda; Lee; ...

 $\eta_{\mathsf{b}}$ 

Sumino, Recksiegel; Kniehl, Penin, Pineda, Smirnov, Steinhauser (with Renormalization group).

Problems with the recent experimental determination:

theory  $\sim$  40 MeV versus experiment  $\sim$  70 MeV

Kniehl, Penin, Smirnov, Steinhauser, Pineda; Penin, Smirnov, Steinhauser, Pineda

$$\delta E \sim m\alpha^4 + m\alpha^5 \ln \alpha + m\alpha^6 \ln^2 \alpha + \cdots + m\alpha^5 + m\alpha^6 \ln \alpha + m\alpha^7 \ln^2 \alpha + m\alpha^8 \ln^3 \alpha + \cdots$$



 Which states belong to the weak/strong coupling regime? To which extent the static potential can be described with perturbation theory

Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, Pineda; Brambilla, Garcia, Soto, Vairo; ...

Spectroscopy at weak coupling

 $M_{\Upsilon(1S)} \longrightarrow m_b(m_b) \sim 4.2$ 

Beneke, Signer; Brambilla, Sumino, Vairo; Pineda; Lee; ...

 $\eta_{\mathsf{b}}$ 

Sumino, Recksiegel; Kniehl, Penin, Pineda, Smirnov, Steinhauser (with Renormalization group).

Problems with the recent experimental determination:

```
theory \sim 40 MeV versus experiment \sim 70 MeV
```

Other states .....

 Which states belong to the weak/strong coupling regime? To which extent the static potential can be described with perturbation theory

Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, Pineda; Brambilla, Garcia, Soto, Vairo; ...

Spectroscopy at weak coupling

 $M_{\Upsilon(1S)} \longrightarrow m_b(m_b) \sim 4.2$ 

Beneke, Signer; Brambilla, Sumino, Vairo; Pineda; Lee; ...

 $\eta_{\mathsf{b}}$ 

Sumino, Recksiegel; Kniehl, Penin, Pineda, Smirnov, Steinhauser (with Renormalization group).

Problems with the recent experimental determination:

```
theory \sim 40 MeV versus experiment \sim 70 MeV
```

Other states .....

- Which states belong to the weak/strong coupling regime? To which extent the static potential can be described with perturbation theory
  - Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, Pineda; Brambilla, Garcia, Soto, Vairo; ...
- Spectroscopy at weak coupling
- Coupling with EM: hard photons, inclusive decays of the bottomonium ground state ar bottomonium sum rules at weak coupling, t-t.

.....

 Which states belong to the weak/strong coupling regime? To which extent the static potential can be described with perturbation theory

Sumino; Pineda; Sumino, Recksiegel; Lee; Bali, Pineda; Brambilla, Garcia, Soto, Vairo; ...

- Spectroscopy at weak coupling
- Coupling with EM: hard photons, inclusive decays of the bottomonium ground state and bottomonium sum rules at weak coupling, t-t.

.....

Relation of the vacuum polarization and  $\Gamma(V \rightarrow e^+e^-)$  $J^{\mu} = \bar{Q}\gamma^{\mu}Q = c_1\psi^{\dagger}\sigma\gamma + \cdots, \qquad c_1 = 1 + a_1\alpha_2 + a_2\alpha_2^2 + \cdots$  $(q_{\mu}q_{\nu}-g_{\mu\nu})\Pi(q^2)=i\int d^4x e^{iqx}\langle \mathrm{vac}|J_{\mu}(x)J_{\nu}(0)|\mathrm{vac}\rangle$  $\Pi(q^2) \sim c_1^2 \langle \mathbf{r} = \mathbf{0} | \frac{1}{F - H} | \mathbf{r} = \mathbf{0} \rangle$  $G(0,0,E) = \sum_{i=1}^{\infty} \frac{|\phi_m(0)|^2}{E_m - E + i\epsilon} + \frac{1}{\pi} \int_0^\infty dE' \frac{|\phi_{E'}(0)|^2}{E' - E + i\epsilon}$  $\Gamma(V \to e^+ e^-) \sim \frac{1}{m^2} c_v^2 |\phi_n^v(\mathbf{0})|^2 \qquad \Gamma(P \to \gamma \gamma) \sim \frac{1}{m^2} c_s^2 |\phi_n^s(\mathbf{0})|^2$  $\left|\phi_n^{\nu/s}(\mathbf{0})\right|^2 = \left|\phi_n^C(\mathbf{0})\right|^2 \left(1 + \delta \phi_n^{\nu/s}\right) = \operatorname{Res} G(\mathbf{0}, \mathbf{0}; E),$ 

where the Coulomb wave function is given by

$$\left|\phi_n^C(\mathbf{0})\right|^2 = \frac{1}{\pi} \left(\frac{m_Q C_F \alpha_s}{2n}\right)^3.$$

Note that  $\left|\phi_n^{\nu/s}(\mathbf{0})\right|^2$  are SCHEME and SCALE dependent.

#### Inclusive electromagnetic decays: bottomonium



Figure: Prediction for the  $\Upsilon(1S)$  decay rate to  $e^+e^-$ . We work in the RS' scheme. Pineda, Signer

# The effect of the resummation of logarithms is important if compared with just keeping the single logarithm.

PREDICTIONS FOR HEAVY QUARKONIUM AT WEAK COUPLING



Figure: Prediction for the  $\eta_b(1S)$  decay rate to two photons. We work in the RS' scheme.

#### **Decay Ratio at NNLL**

Penin, Smirnov, Steinhauser, Pineda

$$\frac{\Gamma(V_{Q}(nS) \to e^{+}e^{-})}{\Gamma(P_{Q}(nS) \to \gamma\gamma)} \sim 1 + \alpha \ln \alpha + \alpha^{2} \ln^{2} \alpha + \cdots + \alpha + \alpha^{2} \ln \alpha + \alpha^{3} \ln^{2} \alpha + \cdots + \alpha^{2} + \alpha^{3} \ln \alpha + \alpha^{4} \ln^{2} \alpha + \cdots$$

$$\left|\phi_n^{\nu/s}(\mathbf{0})\right|^2 = \left|\phi_n^C(\mathbf{0})\right|^2 \left(1 + \delta\phi_n^{\nu/s}\right) = \operatorname{Res}_{E=E_n} G(\mathbf{0}, \mathbf{0}; E),$$

Note that  $\delta \phi_n^{\nu/s}$  are DIVERGENT: SCHEME and SCALE dependent.

$$\frac{\Gamma(V \to e^+ e^-)}{\Gamma(P \to \gamma \gamma)} \sim \frac{c_v}{c_s}(\mu) \left(1 + \delta \phi_n^v(\mu) - \delta \phi_n^s(\mu)\right)$$
$$\sim 1 + \mathcal{O}(\alpha_s) + \mathcal{O}(\alpha_s^2) + \mathcal{O}(v^2) + \cdots$$

 $\Gamma(\eta_b(1S) \to \gamma\gamma) = 0.659 \pm 0.089 (\text{th.})^{+0.019}_{-0.018} (\delta \alpha_s) \pm 0.015 (\text{exp.}) \text{ KeV},$ 



The spin ratio as the function of the renormalization scale  $\nu$  for the (would be) toponium ground state. The yellow band reflects the errors due to  $\alpha_s(M_Z)$ .

PREDICTIONS FOR HEAVY QUARKONIUM AT WEAK COUPLING

Antonio Pineda



The spin ratio as the function of the renormalization scale  $\nu$  for the bottomonium ground state. The yellow band reflects the errors due to  $\alpha_s(M_Z)$ .

PREDICTIONS FOR HEAVY QUARKONIUM AT WEAK COUPLING

Antonio Pineda



Figure: The decay ratio. The horizontal band represents the experimental error of the ratio. The NNLL band reflects the errors due to  $\alpha_s(M_Z) = 0.118 \pm 0.003$ .

PREDICTIONS FOR HEAVY QUARKONIUM AT WEAK COUPLING

Proposal: Reorganization of perturbation theory (Kiyo, Pineda, Signer) Improved perturbation theory "acceleration of perturbation theory"

$$H^{(0)} = rac{\mathbf{p}^2}{m} + V^{(0)} \longrightarrow E_n^{(0)}, \ \phi_n^{(0)}(\mathbf{r})$$

Keep the static potential exactly

$$V_{s}^{(0)} = -C_{F} \frac{\alpha_{s}(1/r)}{r} \left(1 + a_{1} \frac{\alpha_{s}(1/r)}{4\pi} + a_{2} \frac{\alpha_{s}^{2}(1/r)}{16\pi^{2}} + \cdots\right)$$

Relativistic corrections:

$$\Delta H = \frac{V^{(1)}}{m} + \frac{V^{(2)}}{m^2} + \cdots$$

1

$$\Gamma(V \to e^+ e^-) \sim \frac{1}{m^2} c_v^2 |\phi_n^v(\mathbf{0})|^2 + \cdots \qquad \Gamma(P \to \gamma \gamma) \sim \frac{1}{m^2} c_s^2 |\phi_n^s(\mathbf{0})|^2 + \cdots$$

$$E_{HF} \sim c_{HF} |\phi_n^{\nu}(\mathbf{0})|^2 + \cdots$$

$$\left|\phi_n^{\nu/s}(\mathbf{0})\right|^2 = \left|\phi_n^{(0)}(\mathbf{0})\right|^2 \left(1 + \delta \phi_n^{\nu/s}\right) = \operatorname{Res}_{E=E_n} G(\mathbf{0}, \mathbf{0}; E),$$

HF and decays sensitive to the behavior of the wave function at the origin:

$$\left|\phi_n^C(\mathbf{0})\right|^2 \longrightarrow \left|\phi_n^{(0)}(\mathbf{0})\right|^2$$

•  $O(v^2)$  relativistic corrections beyond the Coulomb approximation.

$$\frac{\Gamma(V \to e^+ e^-)}{\Gamma(P \to \gamma \gamma)} \sim \frac{c_v}{c_s}(\mu) \left(1 + \delta \phi_n^v(\mu) - \delta \phi_n^s(\mu)\right)$$
$$\sim 1 + \mathcal{O}(\alpha_s) + \mathcal{O}(\alpha_s^2) + \mathcal{O}(v^2) + \cdots$$

Use of "Improved" potential  $\rightarrow$  numerical analysis (relevant for future analysis with nonperturbative potentials!!) Regularization in position space  $\rightarrow$  change to  $\overline{\rm MS}$  (known at one loop) RG plays an important role.



Figure: Decay ratio.

![](_page_28_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s)$  in the static potential.

Sizable but small correction:  $\sim 1.3\%$ 

![](_page_29_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s^2)$  in the static potential.

Small correction:  $\leq$  1 %

![](_page_30_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s^3)$  in the static potential.

Very small correction. Convergent series

![](_page_31_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s^4)$  in the static potential.

Very small correction. Convergent series.

![](_page_32_Figure_3.jpeg)

![](_page_32_Figure_4.jpeg)

Figure: Decay ratio.

Magnitude of the splitting larger than for top.

![](_page_33_Figure_3.jpeg)

![](_page_33_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s)$  in the static potential.

Sizable but small correction:  $\sim 10\%$ 

![](_page_34_Figure_3.jpeg)

![](_page_34_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s^2)$  in the static potential.

Sizable but small correction:  $\sim 6.7\%$ 

#### BOTTOM

![](_page_35_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s^3)$  in the static potential.

Sizable but convergent correction:  $\sim 3.3\%$ 

## BOTTOM

![](_page_36_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s^4)$  in the static potential.

Small correction but not very much convergent.  $\mathcal{O}(\alpha_s^4)$  incomplete.

![](_page_37_Picture_3.jpeg)

# $\Gamma(\eta_b(1S) \rightarrow \gamma\gamma) = 0.54 \pm 0.15 \text{ keV},$

PREDICTIONS FOR HEAVY QUARKONIUM AT WEAK COUPLING

![](_page_38_Figure_4.jpeg)

Figure: Decay ratio.

Magnitude of the corrections are large.

![](_page_39_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s)$  in the static potential.

Sizable correction:  $\sim 27\%$ 

![](_page_40_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s^2)$  in the static potential.

Sizable correction:  $\sim 20\%$ 

![](_page_41_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s^3)$  in the static potential.

Sizable but convergent: ~13.3%

![](_page_42_Figure_4.jpeg)

Figure: Decay ratio.  $\mathcal{O}(\alpha_s^4)$  in the static potential.

Not very convergent: ~ 10 %.  $\mathcal{O}(\alpha_s^4)$  incomplete. Pattern to bring closer agreement with experiment.

PREDICTIONS FOR HEAVY QUARKONIUM AT WEAK COUPLING

pNRQCD: Effective field theory from QCD that describes Heavy Quarkonium.

- Weak coupling regime.
- Strong coupling regime.

pNRQCD: Effective field theory from QCD that describes Heavy Quarkonium.

#### Weak coupling regime

Problems with hyperfine splitting and decays? Reorganization of perturbative series may lead to a faster convergenc Sizable effect.

Applied to decay ratio. Updated prediction for

 $\Gamma(\eta_b(1S) \rightarrow \gamma\gamma) = 0.54 \pm 0.15 \text{ keV},$ 

Future:

Heavy Quarkonium hyperfine splitting, Decays, sum rules, Spectrum, .... Application with nonperturbative potential (charm?). Assign errors to (unquenched) lattice potentials.

Wave function at the origin: relation with lattice/experimental. Determination of NRQCD matrix element (scheme and scale dependent).

Other considerations:

pNRQCD: Effective field theory from QCD that describes Heavy Quarkonium.

Weak coupling regime

#### Problems with hyperfine splitting and decays?

Reorganization of perturbative series may lead to a faster convergence. Sizable effect.

Applied to decay ratio. Updated prediction for

 $\Gamma(\eta_b(1S) \rightarrow \gamma\gamma) = 0.54 \pm 0.15 \text{ keV},$ 

Future:

Heavy Quarkonium hyperfine splitting, Decays, sum rules, Spectrum, .... Application with nonperturbative potential (charm?). Assign errors to (unquenched) lattice potentials.

Wave function at the origin: relation with lattice/experimental. Determination of NRQCD matrix element (scheme and scale dependent).

Other considerations:

pNRQCD: Effective field theory from QCD that describes Heavy Quarkonium.

Weak coupling regime

Problems with hyperfine splitting and decays? Reorganization of perturbative series may lead to a faster convergence. Sizable effect.

Applied to decay ratio. Updated prediction for

 $\Gamma(\eta_b(1S) \rightarrow \gamma\gamma) = 0.54 \pm 0.15 \text{ keV},$ 

Future:

Heavy Quarkonium hyperfine splitting, Decays, sum rules, Spectrum, .... Application with nonperturbative potential (charm?). Assign errors to (unquenched) lattice potentials.

Wave function at the origin: relation with lattice/experimental. Determination of NRQCD matrix element (scheme and scale dependent).

Other considerations:

pNRQCD: Effective field theory from QCD that describes Heavy Quarkonium.

Weak coupling regime

Problems with hyperfine splitting and decays?

Reorganization of perturbative series may lead to a faster convergence. Sizable effect.

Applied to decay ratio. Updated prediction for

 $\Gamma(\eta_b(1S) \rightarrow \gamma\gamma) = 0.54 \pm 0.15 \text{ keV},$ 

Future:

Heavy Quarkonium hyperfine splitting, Decays, sum rules, Spectrum, .... Application with nonperturbative potential (charm?). Assign errors to (unquenched) lattice potentials.

Wave function at the origin: relation with lattice/experimental. Determination of NRQCD matrix element (scheme and scale dependent).

Other considerations:

pNRQCD: Effective field theory from QCD that describes Heavy Quarkonium.

Weak coupling regime

Problems with hyperfine splitting and decays?

Reorganization of perturbative series may lead to a faster convergence. Sizable effect.

Applied to decay ratio. Updated prediction for

 $\Gamma(\eta_b(1S) \rightarrow \gamma\gamma) = 0.54 \pm 0.15 \text{ keV},$ 

#### Future:

Heavy Quarkonium hyperfine splitting, Decays, sum rules, Spectrum, ....

Application with nonperturbative potential (charm?). Assign errors to (unquenched) lattice potentials.

Wave function at the origin: relation with lattice/experimental. Determination of NRQCD matrix element (scheme and scale dependent).

Other considerations:

pNRQCD: Effective field theory from QCD that describes Heavy Quarkonium.

Weak coupling regime

Problems with hyperfine splitting and decays?

Reorganization of perturbative series may lead to a faster convergence. Sizable effect.

Applied to decay ratio. Updated prediction for

 $\Gamma(\eta_b(1S) \rightarrow \gamma\gamma) = 0.54 \pm 0.15 \text{ keV},$ 

Future:

#### Heavy Quarkonium hyperfine splitting, Decays, sum rules, Spectrum, .... Application with nonperturbative potential (charm?). Assign errors to (unquenched) lattice potentials.

Wave function at the origin: relation with lattice/experimental. Determination of NRQCD matrix element (scheme and scale dependent).

Other considerations:

pNRQCD: Effective field theory from QCD that describes Heavy Quarkonium.

Weak coupling regime

Problems with hyperfine splitting and decays?

Reorganization of perturbative series may lead to a faster convergence. Sizable effect.

Applied to decay ratio. Updated prediction for

 $\Gamma(\eta_b(1S) \rightarrow \gamma\gamma) = 0.54 \pm 0.15 \text{ keV},$ 

Future:

Heavy Quarkonium hyperfine splitting, Decays, sum rules, Spectrum, .... Application with nonperturbative potential (charm?). Assign errors to (unquenched) lattice potentials.

Wave function at the origin: relation with lattice/experimental. Determination of NRQCD matrix element (scheme and scale dependent).

Other considerations:

pNRQCD: Effective field theory from QCD that describes Heavy Quarkonium.

Weak coupling regime

Problems with hyperfine splitting and decays?

Reorganization of perturbative series may lead to a faster convergence. Sizable effect.

Applied to decay ratio. Updated prediction for

 $\Gamma(\eta_b(1S) \rightarrow \gamma\gamma) = 0.54 \pm 0.15 \text{ keV},$ 

Future:

Heavy Quarkonium hyperfine splitting, Decays, sum rules, Spectrum, .... Application with nonperturbative potential (charm?). Assign errors to (unquenched) lattice potentials.

Wave function at the origin: relation with lattice/experimental. Determination of NRQCD matrix element (scheme and scale dependent).

Other considerations:

The hard and RG contribution are not included in non-relativistic lattice determinations of heavy guarkonium properties. Those effects are sizable.

We need not to do perturbation theory/matching in the lattice. Our approach is analytic as far as the divergences is concerned.

pNRQCD: Effective field theory from QCD that describes Heavy Quarkonium.

Weak coupling regime

Problems with hyperfine splitting and decays?

Reorganization of perturbative series may lead to a faster convergence. Sizable effect.

Applied to decay ratio. Updated prediction for

 $\Gamma(\eta_b(1S) \rightarrow \gamma\gamma) = 0.54 \pm 0.15 \text{ keV},$ 

Future:

Heavy Quarkonium hyperfine splitting, Decays, sum rules, Spectrum, .... Application with nonperturbative potential (charm?). Assign errors to (unquenched) lattice potentials.

Wave function at the origin: relation with lattice/experimental. Determination of NRQCD matrix element (scheme and scale dependent).

Other considerations:

# Bottomonium hyperfine splitting? VERY PRELIMINARY

 $E_{HF} \sim c_{HF} |\phi_n^v(\mathbf{0})|^2 + \cdots$ 

![](_page_53_Figure_5.jpeg)

# Bottomonium hyperfine splitting? VERY PRELIMINARY

 $E_{HF} \sim c_{HF} |\phi_n^v(\mathbf{0})|^2 + \cdots$ 

![](_page_54_Figure_5.jpeg)

Result roughly equivalent to non-relativistic lattice.

# Bottomonium hyperfine splitting? VERY PRELIMINARY

 $E_{HF} \sim c_{HF} |\phi_n^{v}(\mathbf{0})|^2 + \cdots$ 

![](_page_55_Figure_5.jpeg)

This gap is not included in non-relativistic lattice.

$$\widehat{G}(E_n) \equiv \sum_m' \frac{|\psi_m^{(0)}(0)|^2}{E_m^{(0)} - E_n^{(0)}} = \lim_{E \to E_n^{(0)}} \left( G(E) - \frac{|\psi_n^{(0)}(0)|^2}{E_n^{(0)} - E} \right)$$

The prime indicates that the sum does not include the state n and

$$G(E) = G(0,0;E) \equiv \lim_{r \to 0} G(r,r;E) = \lim_{r \to 0} \langle \mathbf{r} | \frac{1}{H^{(0)} - E - i0} | \mathbf{r} \rangle$$

$$G^{(r)}(E) = \frac{m_r}{2\pi} \left[ A^{(r)}(r_0;\mu) + B^{(r)}_{V_s^{(0)}}(E;\mu) \right],$$
  
$$A^{(r)}(r_0;\mu) = \frac{u_0(r_0)}{r_0} = \frac{1}{r_0} - 2m_r C_F \alpha_s \ln\left(\mu \, e^{\gamma_E} r_0\right) + \mathcal{O}(\alpha_s^2),$$

$$\widehat{G}^{(r)}(E_n) = \frac{m_r}{2\pi} \left[ A^{(r)}(r_0; \mu) + \widehat{B}^{(r)}_{V_s^{(0)}}(E_n; \mu) \right].$$

$$\delta \rho_n^{\overline{\text{MS}}}(\mu) = -\frac{8m_r C_F}{3m_1 m_2} D_{S^2,s}^{(2)}(\mu) \left( \widehat{B}_{V_s^{(0)}}^{(r)}(E_n^{(0)};\mu) + \frac{1}{3}m_r C_F \alpha_s + \mathcal{O}(\alpha_s^2) \right).$$