IDENTIFICATION OF WARPED EXTRA DIMENSIONS SIGNATURES AT LHC

QCD@WORK, 20 – 23 June 2010, Martina Franca

<u>N. Paver</u>

University of Trieste & INFN-Sezione di Trieste (Italy)

In collaboration with

P. Osland, University of Bergen (Norway), A.A. Pankov, A.V. Tsytrinov ICTP Affiliated Centre @ Technical University of Gomel (Belarus)

<u>Outline</u>

- Motivations
- Introduction to RS1 spin-2 KK graviton excitations
- Angular distributions for $p + p \rightarrow l^+ l^- + X$
- Spin-2 identification potential of A_{CE}
- Extension to $p + p \rightarrow \gamma \gamma + X$
- Results for identification reach on spin-2
- Phenomenology of the radion

Motivations: hierarchies

- Gauge hierarchy: $M_{EW} \simeq 1 \text{ TeV} << M_{Pl} \simeq 10^{16} \text{ TeV}$
- Fermion mass hierarchy: $m_v \ll m_{top}$
- Scale of supersymmetry (soft breaking)
- "Duality" to strongly coupled field theories

Simplest model [RS1] (Randall-Sundrum)

• 1 compactified "warped" extra dimension

5D spacetime, 2 branes set up

• Only gravity can propagate in full 5D space

RS1 model of gravity in extra dimensions

•
$$ds^2 = (a(y))^2 \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2$$

warp factor

- RS solution: $a(y) = e^{-k|y|}$; k > 0 (5D curvature)
- Fundamental mass scales (G = Newton constant) $G^{(4)} \propto M_{Pl}^{-2}; \quad G^{(5)} \propto M_*^{-3}; \quad k.$
- 4D effective theory gives $M_{Pl}^2 = \frac{M_*^3}{L} \left(1 e^{-2k\pi R}\right)$
- "Natural": $M_{Pl} \sim M_* \sim k$
- Mass spectrum on Planck brane $\propto M_* \sim 10^{16} \,\mathrm{TeV}$
- Mass spectrum on TeV brane exponentially warped

down: $M_{\rm H} \propto M_* e^{-k\pi R} \sim {\rm TeV}$ for $kR \sim 10!$ (automatic)

- Exponential twist of hierarchy problem
- Junction conditions at y=0, y=πR => tower of KK, spin-2, graviton excitations h_n
- Masses and couplings to SM matter (TeV brane):
 - Zero mode: $M_0 = 0$ (ordinary gravitation) Coupling $\propto \frac{1}{M_0}$
 - Higher modes: $M_n = x_n k e^{-k\pi R}$, $J_1(x_n) = 0$ ($x_1 \approx 3.8$; $x_2 \approx 7.0$; $x_3 \approx 10.2$; ...) Coupling $\propto \frac{1}{\text{TeV}}$
- Interaction: $\int d^4x \left[\frac{1}{M_{Pl}} h^{(0)}_{\mu\nu}(x) T^{\mu\nu} + \frac{1}{\Lambda_{\pi}} \sum_{n=1}^{\infty} h^{(n)}_{\mu\nu}(x) T^{\mu\nu} + \dots \right]$ • $\Lambda_{\pi} = M_{Pl} e^{-k\pi R} [kR \approx 10] \implies$ gravity effects at TeV scale
- Of interest for colliders: narrow peaks in dilepton/diphoton production

- RS-model parameters and notations:
 - $M_1 \equiv M_G$ mass of first KK graviton (expected $M_G \approx \text{TeV}$)
 - $c = k/M_*$ coupling to matter [universal]
- Unevenly spaced spectrum:
 M_n = (*x_n*/*x*₁) *M_G* distinctive of the model by itself
- Constraints:

▶ c < 0.1	[$k \sim$ 5D curvature]
<i>c</i> ≥ 0.01	[string arguments]
\blacktriangleright Λ_{π} < 10 TeV	[no extra hierarchy]

Width $\Gamma_n = \rho M_n x_n^2 c^2$: narrow resonances for small c

DY production, M_1 =1.5 TeV and subsequent tower states at LHC (c = 1, 0.5, 0.1, 0.05, 0.2, and 0.01,from top to bottom). [*Davoudiasl et al.*]

Experimental (TEVATRON): $M_G > 560 \text{ GeV} (c = 0.01)$ $M_G > 1050 \text{ GeV} (c = 0.1)$ [arXiv:1004.1826v1 [hep-ex], 2010]

Extensions of RS1:

- SM fermions and gauge bosons in the bulk (but not Higgs) → fermion mass hierarchy.
- Stability of R: massless scalar "graviton" → spin-0 "radion".
- Complicated phenomenology predicted.

"Principal" signatures

• Spin-2 KK graviton excitations – cleanest events:

$$p + p \to l^+ l^- + X \qquad \begin{bmatrix} p + p \to R + X \\ & \checkmark \\ l^+ l^-, \gamma \gamma \end{bmatrix}$$

• Discovery vs. identification

$$p + p \rightarrow R \rightarrow l^+ l^-$$

- <u>Discovery reach</u>: peak observation at some M_R over SM background \rightarrow allowed region on model parameters $(R \rightarrow l^+l^-, R \rightarrow \gamma \gamma, ...)$
- Identification reach: identify source of observed peak (different models can give same M_R and same number of events under the peak) ↔ test the peak quantum numbers → more stringent conditions on parameters.

Model examples: production of narrow peaks with same n. of events

- Spin:
 - Model of gravity with extra warped dimension (spin-2)
 - Z' models (spin-1)
 - SUSY with \mathbf{k}_p sneutrinos (spin-0)
- Identify spin of peak \rightarrow discriminate among models

" CONFUSION

REGIONS"

Cross section for $p + p \rightarrow R \rightarrow l^+ l^-$

I) Production cross section: $\sigma(R_{ll}) = \int_{-z_{cut}}^{z_{cut}} dz \int_{M_R - \Delta M/2}^{M_R + \Delta M/2} dM \int_{-Y}^{Y} dy \frac{d\sigma}{dM \, dy \, dz}.$

 \rightarrow number of events under the peak

Experimental inputs & cuts

• Minimal number of signal events over SM background (discovery):

 $[signal = \max(5 \cdot \sqrt{N_B}, 10)]$

- Inputs: reconstruction efficiency $\varepsilon_l = 90\%$; $L_{int} = 10$; 100 fb⁻¹;
- cuts $|y| \le 2.5; P_T^l > 20 \,\text{GeV}; |\eta_{l,\bar{l}}| < 2.5; z_{\text{cut}} = 0.987$
- ATLAS detector resolution: $\Delta M = 24 (0.625 M + M^2 + 0.0056)^{1/2}$ GeV, dilepton mass <u>M measured in TeV</u> units.

II) Angular distribution
$$\frac{\mathrm{d}\sigma}{\mathrm{d}z} = \int_{M_R - \Delta M/2}^{M_R + \Delta M/2} \mathrm{d}M \int_{-Y}^{Y} \frac{\mathrm{d}\sigma}{\mathrm{d}M \,\mathrm{d}y \,\mathrm{d}z} \,\mathrm{d}y$$

 $Y = \log(\sqrt{s}/M)$. ($y \equiv$ rapidity of lepton pair, $M \equiv$ dilepton mass, $z \equiv \cos\theta^*$)

Hadron level $pp \rightarrow l^+ l^- + X$

- SM: $q\overline{q} \rightarrow \gamma, Z \rightarrow l^+ l^-$
- Graviton exchange signatures in RS scenario:

- Parton distribution functions $f_a(\xi, M)$ CTEQ6
- Partonic cross sections $\hat{\sigma}$ [Giudice et al., 1999; Han et al., 1999]

$$\overline{q}q, gg \rightarrow \gamma, Z, G \rightarrow l^+ l^-$$

C.M. $l^+ l^-$ system:
 $z \equiv \cos(\theta^*)$

Summary of angular distributions

$$\frac{d\sigma(G_{u})}{dz} = \frac{3}{8}(1+z^{2})\sigma_{q\bar{q}}^{SM} + \frac{5}{8}(1-3z^{2}+4z^{4})\sigma_{q\bar{q}}^{G} + \frac{5}{8}(1-z^{4})\sigma_{gg}^{G},$$

$$\frac{d\sigma(V_{u})}{dz} = \frac{3}{8}(1+z^{2})(\sigma_{q\bar{q}}^{SM} + \sigma_{q\bar{q}}^{V}),$$

$$\frac{d\sigma(S_{u})}{dz} = \frac{3}{8}(1+z^{2})\sigma_{q\bar{q}}^{SM} + \frac{1}{2}\sigma_{q\bar{q}}^{S}.$$

$$\sigma(G_{u}) = \sigma_{q\bar{q}}^{SM} + \sigma_{q\bar{q}}^{G} + \sigma_{gg}^{G},$$

$$\sigma(V_{u}) = \sigma_{q\bar{q}}^{SM} + \sigma_{q\bar{q}}^{S},$$

$$\frac{Process}{\sigma(S_{u})} = \sigma_{q\bar{q}}^{SM} + \sigma_{q\bar{q}}^{S}.$$

$$\frac{Process}{q\bar{q} - G - l^{+}l^{-}}, \qquad \frac{3}{8}(1+z^{2}) \sigma_{q\bar{q}}^{SM} + \sigma_{q\bar{q}}^{S}.$$

$$\frac{Proces}{q\bar{q} - G - l^{+}l^{-}}, \qquad \frac{3}{8}(1+z^{2}) \sigma_{q\bar{q}}^{SM} + \sigma_{q\bar{q}}^{S}.$$

$$\frac{Proces}{q\bar{q} - G - l^{+}l^{-}}, \qquad \frac{3}{8}(1-3z^{2}+4z^{4}) \sigma_{q\bar{q}}^{S} + 2(1-z^{2}) \sigma_{q\bar{q}}^{S} + 2(1-z^{2})$$

Identification reach on spin-2

- Difficulty of angular analysis: boost to CM frame and sign of z
- Centre-Edge Asymmetry $A_{CE} = \frac{\sigma_{CE}(R_{ll})}{\sigma(R_{ll})}$: z-symmetric integration!

$$\sigma_{CE}(R_{ll}) = \begin{bmatrix} z^* & -\frac{z^*}{\int} & +\frac{1}{\int} \\ -z^* & -\frac{1}{2} & -z^* \end{bmatrix} \frac{d\sigma(R_{ll})}{dz} dz, \quad \underbrace{\begin{array}{c|c} EDGE & EDGE \\ -\frac{1}{2} & -z^* & 0 \\ -1 & -z^* & -z^* \\ -1 & -z^$$

$$\begin{split} A_{\rm CE}^G &= \epsilon_q^{\rm SM} \, A_{\rm CE}^V + \epsilon_q^G \left[2 \left(z^{*5} \right) + \frac{5}{2} \, z^* (1 - z^{*2}) - 1 \right] + \epsilon_g^G \left[\frac{1}{2} \, z^* (5 - z^{*4}) - 1 \right], \\ A_{\rm CE}^V &\equiv A_{\rm CE}^{\rm SM} = \frac{1}{2} \, z^* (z^{*2} + 3) - 1, \quad A_{\rm CE}^S = \epsilon_q^{\rm SM} \, A_{\rm CE}^V + \epsilon_q^S \, (2 \, z^* - 1). \\ \epsilon_q^G, \, \epsilon_g^G \text{s and } \epsilon_q^{\rm SM} \text{: fractions of peak events from } q \bar{q}, g g \to G \to l^+ l^- \\ \text{and SM background, respectively.} \quad \epsilon_q^G + \epsilon_g^G + \epsilon_q^{\rm SM} = 1. \end{split}$$

A_{ce} is the same for Z' models and SM.

X^2 analysis using A_{CE}

Constraints for identification reach on spin-2:

- Exclusion spin-0: $\Delta A_{\rm CE} = A_{\rm CE}^G - A_{\rm CE}^S$ - Exclusion spin-1: $\Delta A_{\rm CE} = A_{\rm CE}^G - A_{\rm CE}^V$

•
$$\chi^2 = \left[\frac{\Delta A_{\rm CE}}{\delta A_{\rm CE}}\right]^2$$
, $\delta A_{\rm CE} = \sqrt{\frac{1 - \left(A_{\rm CE}^G\right)^2}{\epsilon_l \mathcal{L}_{\rm int} \sigma(G_{ll})}}$.

• Condition: $\chi^2 \ge \chi^2_{C.L.} \Rightarrow$ determine range in (*c*, *M*_{*G*})

c = 0.01; $M_R = 1.6$ TeV; $L_{int} = 100$ fb⁻¹; same number of events; error bars correspond to 2σ ; with experimental cuts

- $z^* \approx 0.55$ is "optimal" and χ^2 smooth
- $\Delta A_{CE}^{spin-1} > \Delta A_{CE}^{spin-0} \Rightarrow$ Excl. spin-0 => Excl. spin-1

Exclusion limits and identification reach at 95% C.L. and $\mathcal{L}_{int} = 100 \text{ fb}^{-1}$. The channels $l = e, \mu$ are combined. The theoretically favored region, limited by the $\Lambda_{\pi} = 10 \text{ TeV}$ and c = 0.1 lines, is also indicated.

RS parameter plane

domain allowing for spin-2 identification
 vs. domain allowed for discovery (95% C.L.)

- Potential advantage of A_{CE}
 - "transparency" to spin-1 Z' (model independence)
 - ratio of cross sections --> minimized systematic uncertainties
 - "free" from sign ambiguity in cosθ* (cfr FB asymmetry)
 - Boost to CM must still be performed ...
- Attempt with pseudorapidity [Diener et al., 2009]

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) \rightarrow \eta = -\ln \tan \left(\frac{\theta}{2} \right)$$

Then: $\Delta \eta_{lab} = \Delta \eta^* = \ln \left(\frac{1 + \cos \theta^*}{1 - \cos \theta^*} \right)$

TABLE I: A_{CE} values with corresponding statistical uncertainties for 100 fb⁻¹ integrated luminosity, $p_{T_l} > 20$ GeV, $|\eta_l| < 2.5$, within one bin $\Delta M_{l+l-} = 42.9$ GeV and $M_R =$ 1.5 TeV. Also shown are the expected number of total events for each model assuming 100 fb⁻¹ integrated luminosity.

Model	$\tilde{A}_{CE} \pm \delta \tilde{A}_{CE}$	N Events
$E_6 \ \chi$	-0.106 ± 0.017	3875
$E_6 \; \psi$	-0.095 ± 0.022	2223
$E_6 \eta$	-0.092 ± 0.021	2480
LR Symmetric	-0.099 ± 0.018	3350
Sequential SM	-0.097 ± 0.016	4162
Littlest Higgs	-0.095 ± 0.001	6217
Simplest Little Higgs	-0.094 ± 0.017	3542
RS Graviton	$+0.228 \pm 0.011$	8208
R-parity violating $\tilde{\nu}$	$+0.055 \pm 0.066$	251

$$p + p \rightarrow G \rightarrow \gamma \gamma$$
 (work in progress)

- $V \rightarrow \gamma \gamma$ excludes spin-1: $\frac{G \rightarrow \gamma \gamma}{G \rightarrow l^+ l^-} \sim 2 \frac{\text{predicted}}{(\text{Randall} \text{Wise})} = \text{strong test}$
- Can exclude spin-0? **A**_{CE}-based analysis applicable.

- $g g \rightarrow G \rightarrow \gamma \gamma \propto 1 + 6z^2 + 4z^4$: dominant, peaked at $z = \pm 1$ • $q \overline{q} \rightarrow G \rightarrow \gamma \gamma \propto 1 - z^4$
- Potential background from initial brehmsstrahlung not for M_{G} ~ TeV

Angular distribution of photons in the diphoton c.m. system for spin-2 graviton resonant production in the RS model with c=0.01; spin-0 resonant production, and prompt photon background. We take $M_R = 1.5$ TeV. The spin-0 distribution is normalized so that the total number of events is the same for the graviton and the scalar.

Results for spin-2 identification

 Discovery reach [5σ] and spin-2 identification reach on lowest RS graviton from ACE analysis (95% CL)

	Discovery		Identification	
L _{int}	c=0.01	c=0.1	c=0.01	c=0.1
10 fb ⁻¹	1.7 TeV	3.5 TeV	1.1 TeV	2.4 TeV
100 fb ⁻¹	2.5 TeV	4.6 TeV	1.6 TeV	3.2 TeV

- Allowed region for discovery substantially reduced by spin-0 and spin-1 rejection
- Dramatic restriction from Λ_{π} < 10 TeV (order of magnitude)

• Discovery of $G^{(n=2)}$ in addition to lowest $G^{(n=1)}$:

Feasible (5o) for M_g=	L _{int}	c=0.01	c=0.1
	10 fb ⁻¹	1.1 TeV	2.7 TeV
	100 fb ⁻¹	1.6 TeV	3.7 TeV

• Recall
$$\frac{M_2}{M_1} = \frac{x_2}{x_1}$$
 predicted.

- Relevant (*c*, *M_G*) pairs always stay within the spin-0 (=> spin-1) rejection domain.
- RS resonance <u>doubly clinched</u>: spin-2 from angular analysis & mass spectrum.

Discovery limits and identification reaches on the spin-2 graviton parameters in the plane (M_G, c) , using the $\gamma\gamma$ and e^+e^- production cross sections and A_{CE} at the LHC with L_{int} =100 fb⁻¹. *Discovery* – 5 σ . *Exclusion* – rejection of the spin-0 hypothesis with $\gamma\gamma$ channel and rejection of both spin-1 and spin-0 hypotheses with e^+e^- channel at 95% C.L. Both of them determine the regions lying above the corresponding curves and marked as spin-2 that correspond to the identification of spin-2 RS graviton. The theoretically favored region, $\Lambda_{\pi} < 10$ TeV (shaded), is also indicated.

[CMS PAS EXO-09-009]

(γγ)

Figure 3: Limit on RS parameters (M_1, \tilde{k}) , extrapolated from the results of the large ED diphoton search for 100/pb. The area to the left of the curves is excluded. The gray shaded region shows the area excluded for $\Lambda_{\pi} < 10 \text{ TeV/c}^2$. The area below the dash-dotted line is excluded by precision electroweak data [11].

Radion phenomenology

- 4D massless scalar: $ds^2 = e^{-2k|y|T(x)}g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + (T(x))^2 dy^2$
- Ruled out (tests of general relativity) & R must be stabilized
- Massive scalar field Φ in the bulk with VEV and "brane" conditions (Goldberger – Wise)
- \Rightarrow minimum of potential at $y = \pi R \approx 10$ (stable 2-brane set-up)

On the TeV brane: • $m_{\Phi} \sim \varepsilon \frac{1}{\sqrt{kR}} M_{Pl} e^{-\pi kR} \equiv \varepsilon \frac{\Lambda_{\pi}}{\sqrt{kR}} \sim \text{TeV}, \text{ but } m_{\Phi} < G_1(KK)$.

- Lightest mode in RS1, most important excitation to study at LHC?
- Interaction with SM fields:

$$\mathcal{E} \sim \frac{1}{\sqrt{6}\Lambda_{\pi}} \Phi T_{\mu}^{\ \mu} \equiv \frac{1}{\Lambda_{\Phi}} \Phi T_{\mu}^{\ \mu}$$

• Λ_{Φ} new scale at ~ TeV, roughly

- Similar couplings as SM Higgs (scale factor $\frac{v_{SM}}{\Lambda}$)
- Except $g_{\Phi \rightarrow gg} >> g_{H \rightarrow gg}$ (loop & trace anomaly)
- $\Phi \leftarrow \rightarrow$ H interference for lower $\mathbf{m}_{\Phi} \rightarrow$ accompanies Higgs searches

Branching ratios of the radion versus m_{ϕ} . (m_{H} = 150 GeV.) [K.

[K. Cheung , arXiv:hep-ph/0009232]

Expected scenario at the LHC

Invariant mass distribution $d\sigma/dM_{ZZ}$ for the radion signal with $m_{\phi} = 500, 800, 1000 \text{ GeV}$ and the SM background $q \ qbar \rightarrow ZZ$ at the LHC, for (a) $\Lambda_{\phi} = 246$ GeV and (b) $\Lambda_{\phi} = 1$ TeV. A cut of $|\cos \theta_{Z}^{*}| < 0.8$ is imposed. [K. Cheung , arXiv:hep-ph/0009232]

LHC discovery reach for the radion using "translated" Higgs projections from CMS (and ATLAS in the lower mass region) for 30 fb⁻¹ of luminosity. [P. Nath et al., arXiv:1001.2693v1 [hep-ph]]