Drell-Yan production at the LHC in deconstructed Higgsless models

Stefania De Curtis

INFN and Dept. of Physics, Florence

QCD@Work - International Workshop on QCD
Theory and Experiment 20-23 June 2010 Martina Franca

Valle d'Itria - Italy
Beppe Nardulli Memorial Workshop

Outline of the talk

based on papers by: Accomando, Casalbuoni, DC, Dolce, Dominici, Fedeli, Gatto

- Motivations for Higgsless models
- Example of breaking the EW symmetry without the Higgs (BESS)
- Linear moose: effective description of EWSB with extra gauge bosons
- EWPT and Unitarity bounds
- Direct couplings to fermions
- The 4-site model, new vector and axial-vector resonances
- Drell-Yan processes @ the Tevatron and LHC

Problems of the Higgs sector

The evolution of the Higgs self-coupling (neglecting gauge fields and fermion contributions) shows up a Landau pole

$$
\frac{1}{\lambda(\mathrm{M})}=\frac{1}{\lambda\left(m_{H}\right)}-\frac{3}{4 \pi^{2}} \log \frac{\mathrm{M}^{2}}{m_{\mathrm{H}}^{2}} \quad \mathrm{M}_{\mathrm{Lp}}=\mathrm{m}_{\mathrm{H}} \mathrm{e}^{4 \pi^{2} v^{2} / 3 \mathrm{~m}_{\mathrm{H}}^{2}}
$$

- or M_{Lp} pushed to infinity, but then λ goes to 0 , triviality !
- or there is a physical cutoff at a scale $M<M_{\text {Lp }}$.

If the cutoff is big ($\mathrm{M} \sim \mathrm{M}_{\text {Planck }}$, or $\mathrm{M}_{\mathrm{GUT}}$), λ is small. The theory is perturbative, but the Higgs mass acquires big radiative corrections:
naturalness problem - to avoid it the quadratic divergence should cancel (SUSY)

$$
\delta \mathrm{m}_{\mathrm{H}}^{2}=\frac{\lambda}{8 \pi^{2}} \mathrm{M}^{2}
$$

If we keep the cutoff $\sim 1 \mathrm{TeV}, \lambda$ is large, m_{H} is $\mathrm{O}(\mathrm{TeV})$. The theory is non perturbative

1) $\lambda \ll 1 \Rightarrow$ new particles lighter than 1 TeV

In the following: NEW STRONG PHYSICS at the
2) $\lambda \gg 1 \Rightarrow$ new particles around 1 TeV TeV SCALE and NO HIGGS

Symmetry Breaking without the Higgs

- A strongly interacting theory can only rely on an effective description. For the SB sector use a general σ model formulation
- For $\operatorname{SU}(2)_{\mathrm{L}} \mathrm{xSU}(2)_{\mathrm{R}} / \mathrm{SU}(2)_{\mathrm{V}}$ the σ model can be obtained as the formal limit M_{H} to infinity of the SM and is described in terms of a field Σ in SU(2)

$$
\Sigma \rightarrow g_{L} \Sigma g_{\mathrm{R}}^{\dagger}, \quad g_{\mathrm{L}} \in \mathrm{SU}(2)_{\mathrm{L}}, \quad \mathrm{~g}_{\mathrm{R}} \in \mathrm{SU}(2)_{\mathrm{R}}
$$

- The strong dynamics is completely characterized by the transformation properties of the field Σ summarized in the moose diagram

$$
\mathrm{L}=\frac{\mathrm{V}^{2}}{4}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right), \quad \Sigma=\mathrm{e}^{\mathrm{i} \pi \cdot \vec{\tau} / \mathrm{v}} \quad \mathrm{SU}(2)_{\mathrm{L}}{ }^{\Sigma} \mathrm{SU}(2)_{\mathrm{R}}
$$

- The breaking is produced by $\quad\langle\Sigma\rangle=1$
- Introduce covariant derivatives to gauge the $\operatorname{SU}(2)_{L} \mathrm{xU}(1)_{\mathrm{Y}}$

$$
\mathrm{D}_{\mu} \Sigma=\partial_{\mu} \Sigma+\mathrm{igW}_{\mu} \Sigma-\mathrm{ig}^{\prime} \Sigma Y_{\mu}
$$

The interactions with W and Y are to be considered as perturbations with respect to the strong dynamics described by the σ model

- Due to unitarity violation, the validity of this description is up to

$$
\left|\mathrm{a}_{0}\right|=\frac{1}{16 \pi} \frac{\mathrm{~s}}{\mathrm{v}^{2}} \leq 1 \Rightarrow \mathrm{E} \leq 4 \sqrt{\pi} \mathrm{~V} \approx 1.7 \mathrm{TeV}
$$

Enlarging the σ model

Enlarge the non- linear σ model by introducing vector resonances The unitarity properties improve (as it is known from QCD)

To be consistent with the non-linear realization use the tool of hidden gauge symmetries (Bando,Kugo, et al 1985):

- Introduce a non- dynamical gauge symmetry and a set of new scalar fields
- The scalar fields can be eliminated by using the local symmetry and the theory is equivalent to the non linear σ-model
- Promoting the local symmetry to be dynamical allows to introduce vector resonances as the gauge fields of the new gauge interaction
- The new vector resonances are massive due to the breaking of the local symmetry implied by the non-linear realization

The BESS model

The simplest enlargement of the non-linear model is the BESS (Breaking Electroweak Symmetry Strongly) model (Casalbuoni, DC, Dominici ,Gatto, 1985) based on $\operatorname{SU}(2)_{\mathrm{L}} \mathrm{xSU}(2)_{\mathrm{R}} / \mathrm{SU}(2)$ with an additional local group $\mathrm{G}_{1}=\mathrm{SU}(2)$

New vector resonances as the gauge fields of \mathbf{G}_{1}

$$
\frac{\mathrm{L}=\mathrm{f}_{1}^{2} \operatorname{Tr}\left[\mathrm{D}_{\mu} \Sigma_{1}^{\dagger} \mathrm{D}^{\mu} \Sigma_{1}\right]+\mathrm{f}_{2}^{2} \operatorname{Tr}\left[\mathrm{D}_{\mu} \Sigma_{2}^{\dagger} \mathrm{D}^{\mu} \Sigma_{2}\right]-\frac{1}{2} \operatorname{Tr}\left[\mathrm{~F}_{\mu \nu}(\mathrm{V}) \mathrm{F}^{\mu \nu}(\mathrm{V})\right]}{\left(\mathrm{D}_{\mu} \Sigma_{1}=\partial_{\mu} \Sigma_{1}+\mathrm{ig} \Sigma_{1} \Sigma_{1} \mathrm{~V}_{\mu}, \quad \mathrm{D}_{\mu} \Sigma_{2}=\partial_{\mu} \Sigma_{2}-\mathrm{ig}_{1} \mathrm{~V}_{\mu} \Sigma_{2}\right)}
$$

This model describes 6 scalar fields and 3 gauge bosons.
After the breaking $\operatorname{SU}(2)_{\mathrm{L}} \mathrm{xSU}(2)_{\mathrm{R}} \mathrm{xSU}(2)_{\text {Iocal }} \rightarrow \mathrm{SU}(2)$, we get 3 Goldstone bosons (necessary to give mass to \mathbf{W} and Z after gauging the EW group) and 3 massive vector bosons with mass
$M_{V}{ }^{2}=\left(f_{1}{ }^{2}+f_{2}{ }^{2}\right) g_{1}{ }^{2} \quad\left(g_{1}=\right.$ gauge coupling of $\left.V\right)$

Linear Moose model

(Son,Stephanov; Foadi et al; Casalbuoni et al; Chivukula et al; Georgi; Hirn,Stern)

- Generalize the moose construction: many copies of the gauge group G intertwined by link variables Σ
- Simplest example: $\mathrm{G}_{\mathrm{i}}=\mathbf{S U}(2)$. Each Σ_{i} describes 3 scalar fields

- The model has two global symmetries related to the beginning and to the end of the moose, $G_{L}=S U(2)_{L}$ and $G_{R}=S U(2)_{R}$ which can be gauged to the standard $S U(2)_{L} x U(1)_{Y}$
- Particle content: 3 massive gauge bosons, W and Z, the massless photon and 3 K massive vectors. Important feacture: $\mathrm{SU}(2)_{\text {diag }}$ is a custodial symmetry
- The BESS model can be recast in a 3 -site model ($\mathrm{K}=1$), and its generalization with vector and axial-vector resonances (Casalbuoni, DC, Dominici, Gatto, Feruglio, 1989) can be recast in a 4 -site model (K=2) (see also Foadi,Frandsen,Ryttov,Sannino, 2007)

The continuum limit

- The moose picture for large values of K can be interpreted as the discretization of a continuum gauge theory in 5D along a compact fifth dimension \rightarrow linear moose as an effective scheme for different theoretical context with extra spin-one particles
- The continuum limit is defined by

$$
\begin{aligned}
& \mathrm{K} \rightarrow \infty, \quad \mathrm{a} \rightarrow 0, \quad \mathrm{Ka} \rightarrow \pi \mathrm{R} \\
& \lim _{\mathrm{a} \rightarrow 0} \mathrm{ag}_{\mathrm{i}}^{2}=\mathrm{g}_{5}^{2}, \quad \lim _{\mathrm{a} \rightarrow 0} \mathrm{af}_{\mathrm{i}}^{2}=\mathrm{f}^{2}(\mathrm{z})
\end{aligned}
$$

$a=$ lattice spacing, $R=$ compactification radius, $g_{5}=$ bulk gauge coupling

- The link couplings f_{i} and the gauge couplings g_{i} can be simulated in the continuum by generally warped 5 -dim metrics
- Flat metric corresponds to equal f's and g's
- In the continuum limit, the structure of the moose has an interpretation in terms of a geometrical Higgs mechanism in a pure 5D gauge theory
- A gauge field is a connection: a way of relating the phases of the fields at nearby points.
- After discretizing the $5^{\text {th }}$ dim, the field A_{5} is naturally substituted by a link variable Σ realizing the parallel transport between two lattice sites ($A_{\mu}{ }^{i}=K K$ modes)

$$
\begin{gathered}
\Sigma_{\mathrm{i}} \approx 1-\mathrm{iaA}_{5}{ }_{5}^{\mathrm{i}} \approx \mathrm{e}^{-\mathrm{ia} \mathrm{~A}_{5}^{\mathrm{i}}} \\
\Sigma \Sigma^{\dagger}=1 \\
\mathrm{D}_{\mu} \Sigma_{\mathrm{i}}=-\mathrm{iaF}_{\mu 5}^{\mathrm{i}-1} \\
\mathrm{~F}_{\mu 5}^{\mathrm{i}}=\partial_{\mu} \mathrm{A}_{5}^{\mathrm{i}}-\partial_{5} \mathrm{~A}_{\mu}^{\mathrm{i}}-\mathrm{i}\left[\mathrm{~A}_{\mu}^{\mathrm{i}}, \mathrm{~A}_{5}^{\mathrm{i}}\right]
\end{gathered}
$$

- The action for the deconstructed gauge theory is (Hill, Pokorski, Wang, 2001)

$$
\mathrm{S}=\int \mathrm{d}^{4} \mathrm{x} \frac{\mathrm{a}}{\mathrm{~g}_{5}^{2}}\left(-\frac{1}{2} \sum_{\mathrm{i}} \operatorname{Tr}\left[\mathrm{~F}_{\mu \nu}^{\mathrm{i}} \mathrm{~F}^{\mu v i}\right]+\frac{1}{\mathrm{a}^{2}} \operatorname{Tr}\left[\left(\mathrm{D}_{\mu} \Sigma_{\mathrm{i}}\right)\left(\mathrm{D}_{\mu} \Sigma_{\mathrm{i}}\right)^{\dagger}\right]\right), \quad \mathrm{A}_{\mu}^{\mathrm{i}}=\mathrm{KK} \bmod \mathrm{es}
$$

- Sintetically described by a moose diagram (Georgi, 1986, Arkani-Hamed, Cohen, Georgi, 2001)

Unitarity bounds for the Linear Moose

(Chivukula, He; Muck, Nilse, Pilaftis, Ruckl; Csaki, Grojean, Murayama, Pilo, Terning)

- Spin-one resonances generally delay the perturbative unitarity bound
- The worst high-energy behaviour comes from the scattering of longitudinal vector bosons.
- For $s \gg M_{w}{ }^{2}$ use the equivalence theorem and evaluate the amplitudes for the corresponding GB's $\sum_{i}=\mathrm{e}^{\mathrm{i} \vec{\pi}_{\mathrm{i}} \cdot \vec{\tau} / 2 \mathrm{f}_{\mathrm{i}}}$ In the high-energy limit: $\mathrm{A}_{\pi_{i}^{+} \pi_{\mathrm{i}}^{-} \rightarrow \pi_{\mathrm{i}}^{+} \pi_{\mathrm{i}}^{-}} \rightarrow-\frac{\mathrm{u}}{4 \mathrm{f}_{\mathrm{i}}^{2}}$
- The unitarity limit is determined by the smallest link coupling

$$
\text { by taking } f_{i}=f_{c}: \quad A \rightarrow-\frac{u}{(K+1) v^{2}}
$$

Hardly compatible with electro-weak experimental constraints

Constraints from EWPT

- Oblique EW corrections are coded in 3 parameters $\varepsilon_{i}, \mathrm{i}=1,2,3$ (Altarelli, Barbieri, 1991), or S,T,U (Peskin, Takeuchi, 1990).
- To the lowest order the new physics contribution to ε_{1} and ε_{2} vanishes due to the $\underline{\operatorname{SU}(2)}$ custodial symmetry of the SB sector. At the same order ε_{3} has a dispersive representation (for oblique corrections). Neglecting loop corrections (for loops see Dawson et al, Chivukula et al, Barbieri et al):

$$
\varepsilon_{3}=\frac{g^{2}}{4} \sum_{i}\left(\frac{g_{i V}^{2}}{m_{i}^{4}}-\frac{g_{i A}^{2}}{m_{i}^{4}}\right)=g^{2} \sum_{i=1}^{K} \frac{\left(1-y_{i}\right) y_{i}}{g_{i}^{2}} \quad\left(y_{i}=\sum_{j=1}^{i} \frac{f^{2}}{f_{j}^{2}}, \quad \frac{1}{f^{2}}=\sum_{i=1}^{K+1} \frac{1}{f_{i}^{2}}\right)
$$

- Since

$$
0 \leq \mathrm{y}_{\mathrm{i}} \leq 1 \Rightarrow \varepsilon_{3} \geq 0
$$

- Example: $\quad \mathrm{f}_{\mathrm{i}}=\mathrm{f}_{\mathrm{c}}, \quad \mathrm{g}_{\mathrm{i}}=\mathrm{g}_{\mathrm{c}} \Rightarrow \varepsilon_{3}=\frac{1}{6} \frac{\mathrm{~g}^{2}}{\mathrm{~g}_{\mathrm{c}}^{2}} \frac{\mathrm{~K}(\mathrm{~K}+2)}{\mathrm{K}+1}$
- $\epsilon_{3}{ }^{\exp } \sim 10^{-3}$, for $\mathrm{K}=1, \mathbf{g}_{\mathrm{c}} \sim(16 \mathrm{~g}) \sim 10$, for large $\mathrm{K}, \mathrm{g}_{\mathrm{c}} \sim 10 \sqrt{ } \mathrm{~K} \longrightarrow$ strongly interacting gauge bosons \longrightarrow UNITARITY VIOLATION

Direct fermionic couplings

(Csaki et al, Foadi et al, Casalbuoni et al, Chivukula et al)

- Left- and right-handed fermions, $\psi_{L(R)}$ are coupled to the ends of the moose, but they can couple to any site by using a Wilson line

$$
\begin{gathered}
\chi_{\mathrm{L}}^{\mathrm{i}}=\sum_{\mathrm{i}}^{\dagger} \Sigma_{\mathrm{i}-1}^{\dagger} \cdots \sum_{1}^{\dagger} \psi_{\mathrm{L}}, \quad \chi_{\mathrm{L}}^{\mathrm{i}} \rightarrow \mathrm{U}_{\mathrm{i}} \chi_{\mathrm{L}}^{\mathrm{i}} \\
\mathrm{~b}_{\mathrm{i}} \bar{\chi}_{\mathrm{L}}^{\mathrm{i}} \gamma^{\mu}\left(\partial_{\mu}+\mathrm{ig}_{\mathrm{i}} \mathrm{~V}_{\mu}^{\mathrm{i}}+\frac{\mathrm{i}}{2} \mathrm{~g}^{\prime}(\mathrm{B}-\mathrm{L}) \mathrm{Y}_{\mu}\right) \chi_{\mathrm{L}}^{\mathrm{i}} \quad \begin{array}{l}
\text { no delocalization of the } \\
\text { right-handed fermions. } \\
\text { Small terms O(10-3) since } \\
\text { they could contribute to } \\
\text { right-handed currents } \\
\text { constrained by non- } \\
\text { leptonic K- decays } \\
\text { and } \mathrm{b} \rightarrow \text { s processes }
\end{array} \\
\varepsilon_{1} \approx \mathrm{O}\left(\mathrm{~b}_{\mathrm{i}}^{2}\right), \quad \varepsilon_{2} \approx \mathrm{O}\left(\mathrm{~b}_{\mathrm{i}}^{2}\right), \quad \varepsilon_{3} \approx \sum_{\mathrm{i}=1}^{\mathrm{K}} \mathrm{y}_{\mathrm{i}}\left(\frac{\mathrm{~g}_{\mathrm{i}}^{2}}{\mathrm{~g}_{\mathrm{i}}^{2}}\left(1-\mathrm{y}_{\mathrm{i}}\right)-\mathrm{b}_{\mathrm{i}}\right)
\end{gathered}
$$

b_{i} from 5D bulk fermions with brane kinetic terms
(Foadi,Gopalakrishna,Schmidt; Csaki,Hubitsz,Meade; Bechi,Casalbuoni, DC, Dominici)

The Higgsless 4-site Linear Moose model

(Accomando, DC, Dominici, Fedeli, 2008)

- 2 gauge groups $\mathrm{G}_{\mathrm{i}}=\mathrm{SU}(2)$ with global symmetry $\mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{SU}(2)_{\mathrm{R}}$ plus

LR symmetry: $\mathrm{g}_{2}=\mathrm{g}_{1}, \mathrm{f}_{3}=\mathrm{f}_{1}$

- 6 extra gauge bosons $W_{1,2}$ and $Z_{1,2}$ (have definite parity when $g=g^{`}=0$)

- 5 new parameters $\left\{f_{1}, f_{2}, b_{1}, b_{2}, g_{1}\right\}$ related to their masses and couplings to bosons and fermions (one is fixed to reproduce \mathbb{M}_{z})

$$
\begin{array}{ll}
f_{1}, f_{2} \rightarrow M_{1}, M_{2} & M_{1}=f_{1} g_{1} \\
M_{2}=\frac{M_{1}}{z}>M_{1} & z=\frac{f_{1}}{\sqrt{f_{1}^{2}+2 f_{2}^{2}}}<1
\end{array}
$$

New charged and neutral gauge bosons almost degenerate

$$
\mathrm{M}_{1,2}^{\mathrm{c}, \mathrm{n}} \sim \mathrm{M}_{1,2}+\mathrm{O}\left(\frac{\mathrm{e}^{2}}{\mathrm{~g}_{1}^{2}}\right)
$$

The Higgsless 4-site Linear Moose model

Unitarity and EW precision tests

$$
\mathrm{O}\left(\mathrm{e}^{2} / \mathrm{g}_{1}{ }^{2}\right), \mathrm{b}_{1}=\mathrm{b}_{2}=0
$$

Best unitarity limit for $f_{1}=f_{2}$ or $z=1 / \sqrt{ } 3$

Unitarity and EWPT are hardly compatible!

A direct coupling of the new gauge bosons to ordinary matter must be included: $\mathbf{b}_{1,2} \neq \mathbf{0}$

The Higgsless 4-site Linear Moose model

$\begin{gathered}\text { EW precision tests } \\ \text { Calculations } O\left(\mathrm{e}^{2} / \mathrm{g}_{1}{ }^{2}\right) \text {, exact in } \mathrm{b}_{1}, \mathrm{~b}_{2}\end{gathered} \quad \varepsilon_{1,2} \approx \mathrm{O}\left(\mathrm{b}^{2}\right), \quad \varepsilon_{3} \approx\left(\frac{\mathrm{~g}^{2}}{2 \mathrm{~g}_{1}^{2}}\left(1-\mathrm{z}^{4}\right)-\frac{\mathrm{b}}{2}\right)$

$$
\begin{aligned}
& \varepsilon_{1,2} \approx \mathrm{O}\left(\mathrm{~b}^{2}\right), \quad \varepsilon_{3} \approx\left(\frac{\mathrm{~g}^{2}}{2 \mathrm{~g}_{1}^{2}}\left(1-\mathrm{z}^{4}\right)-\frac{\mathrm{b}}{2}\right) \\
& \mathrm{b}=\frac{\mathrm{b}_{1}+\mathrm{b}_{2}-\left(\mathrm{b}_{1}-\mathrm{b}_{2}\right) \mathrm{z}^{2}}{1+\mathrm{b}_{1}+\mathrm{b}_{2}}
\end{aligned}
$$

95\%CL

the bound from ε_{2} is not effective

The Higgsless 4-site Linear Moose model
EW precision tests

$$
\left.\epsilon_{3} \sim \sqrt{2(} \frac{a^{(e)}{ }_{1 L}}{g_{1}}-z^{2} \frac{a^{(e)}{ }_{2 L}}{g_{1}}\right)-\frac{e^{2}}{g_{1}^{2}} \frac{\left(1+z^{4}\right)}{\cos ^{2} \theta_{w}}
$$

$M_{1}=1000 \mathrm{GeV}$ and $M_{2}=1300 \mathrm{GeV}$

Bounds on neutral couplings for fixed mass values
C_{3} bounds favour $\mathrm{a}^{\mathrm{e}}{ }_{2 L}>\mathrm{a}^{\mathrm{e}}{ }_{1 \mathrm{~L}}$

$$
-0.15<\mathrm{a}_{1,2}^{\mathrm{L}}\left(\mathrm{Z}_{1,2} \mathrm{ee}\right)<0.1
$$ couplings are SM-size

for larger $\mathbf{M}_{1,2}$ the bounds from ε_{1} are less stringent

Z_{1}, Z_{2} properties

in most part of the parameter space the Z_{2} coupling to SM fermions is bigger than the Z_{1} one

The BRs into fermions evaluated for the maximum coupling allowed by EWPT for each mass value

New spin-1 resonances @ the LHC

where do we get clues?

Vector boson scattering

.... associated production, and even more complicated processes where (extra) gauge bosons can be produced

For the 4-site model DY processes can be a good discovery channel Let's start with the TEVATRON

Exclusion at the Tevatron $3.6 \mathrm{fb}^{-1}$ (DO Note 5923-CONF)

Upper limit on the observed and expected cross section at 95\% CL with
superimposed the SSM Z', E6 Z',
and 4-site models

D0 counting strategy: Asymmetric mass window: $M_{Z^{\prime}}>M_{Z^{\prime}}-3 R$ with $R=$ mass resolution= $3.4 \% M_{Z^{\prime}}$ 4-site model with $z=0.8-Z^{\prime}=Z_{1} \quad$ (integration over the mass window contains both Z_{1} and Z_{2})

- for each Z_{1} Mass take the maximum allowed electron coupling $95 \% Z_{1}, Z_{2}$ mass limit from DO observed data $\sim 500,650 \mathrm{GeV}$ (expected $\sim 650,800 \mathrm{GeV}$)

DY-processes with Z_{1}, Z_{2} exchange at theTevatron

Exclusion

95\% Exclusion with D0 counting strategy M_{2} limit from D0-3.6fb-1 observed data $\sim 650 \mathrm{GeV}$ from D0-10fb-1 expected data $\sim 900 \mathrm{GeV}$

Discovery

5σ-discovery with $10 \mathrm{fb}^{-1}$ by requiring $\frac{\mathrm{S}}{\sqrt{\mathrm{B}}}>5$ and min of 5 evts under the peak within $M+/-R$ $R=$ mass resolution= 3-4\% $M_{1,2}$

Signal acceptance 20\%
$M_{1}{ }_{1}, M_{2}=620,761 \mathrm{GeV}$ $\Gamma_{1}, \Gamma_{2}=11.7,8.2 \mathrm{GeV}$
$B=$ \# background evts
T= \# total evts
$\sigma=(T-B) / \sqrt{B}$
\# evts within $M \pm R$
R =resolution=3.4\% M here R > $\mathrm{F} / 2$

DY-processes with $Z_{1,2}$ and $W_{1,2}^{ \pm}$exchange at the LHC
FAST_2f is an upgrade of PHASE [Accomando, Ballestrero, Maina], a MCEG for multi-particle processes at the LHC. It is dedicated to Drell-Yan processes at the Leading-Order and interfaced with PYTHIA

Processes

We consider charged and neutral Drell-Yan leptonic channels $\cdot p p \rightarrow I I$ with $I=\mathbf{e}, \mu$
$\cdot p p \rightarrow l v$ with $l=\mathrm{e}, \mu$ and $l v=l v+l^{+} v$
CTEQ6L PDF
no realistic detector simulation is included
LHC configurations : $\sqrt{s}=7 \mathrm{TeV}, \mathrm{L}=1 \mathrm{fb}^{-1}$

$$
\sqrt{s}=14 \mathrm{TeV}, \quad \mathrm{~L}=10 \mathrm{fb}^{-1}
$$

Exclusion at the LHC $\left(\sqrt{s}=7 \mathrm{TeV}, \mathrm{L}=1 \mathrm{fb}^{-1}\right)$

Discovery at the LHC $\left(\sqrt{s}=7 \mathrm{TeV}, \mathrm{L}=1 \mathrm{fb}^{-1}\right)$

$5 \sigma-\left(\mathrm{M}_{1}, \mathrm{M}_{2}\right)$ discovery limit from LHC $7 \mathrm{TeV} 1 \mathrm{fb}^{-1}$ expected data $\sim(750,1100) \mathrm{GeV}$

$$
(z=0.8)
$$

Drell-Yan process $\mathrm{pp} \rightarrow \gamma, \mathrm{Z}, \mathrm{Z}_{1}, \mathrm{Z}_{2} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$at the LHC 7 TeV $\mathrm{L}=1 \mathrm{fb}^{-1}$

Discovery @ LHC 7 TeV $\left(\mathrm{pp} \rightarrow \gamma, \mathrm{Z}, \mathrm{Z}_{1}, \mathrm{Z}_{2} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)$

Luminosity needed for a 5σ-discovery for the maximum coupling allowed by EWPT

The low-edge of the spectrum detectable @ LHC 7TeV with L<1 fb-1 ($500 \mathrm{pb}^{-1}$ to discover a $800 \mathrm{GeV} \mathrm{Z}_{1}$ and $1 \mathrm{TeV} \mathrm{Z}_{2}$)

Z_{1}, Z_{2} D-Y production @ the LHC 14TeV L=10 fb ${ }^{-1}$

(Accomando, DC, Dominici, Fedeli)

Total \# of evts in a 10 GeV -bin versus $\mathrm{M}_{\text {inv }}(\mathrm{l}+\mathrm{I})$ for $\mathrm{L}=10 \mathrm{fb}^{-1}$. Sum over e, μ S+B=\#evts($M \pm \Gamma$)

$\mathrm{Z}_{1}, \mathrm{Z}_{2}$ production @ the LHC $14 \mathrm{TeV} \mathrm{L}=10 \mathrm{fb}^{-1}$

	$M_{1,2}(\mathrm{GeV})$	$b_{1,2}$	$N_{\mathrm{evt}}^{\mathrm{sig}}\left(Z_{1}\right)$	$N_{\mathrm{evt}}^{\mathrm{tot}}\left(Z_{1}\right)$	$\sigma\left(Z_{1}\right)$	$N_{\mathrm{evt}}^{\mathrm{sig}}\left(Z_{2}\right)$	$N_{\mathrm{evt}}^{\mathrm{tot}}\left(Z_{2}\right)$	$\sigma\left(\mathrm{Z}_{2}\right)$
1	500,1250	$-0.05,0.09$	47	154	3.8	134	143	11.2
2	500,1250	$0.06,0.02$	11	123	1.0	0	9	0.0
3	1732,3000	$-0.07,0.04$	7	10	2.2	7	8	2.5
4	1732,3000	$0.08,-0.04$	5	9	1.7	6	6	2.4
5	1000,1250	$-0.08,0.03$	108	119	9.9	291	302	16.7
6	1000,1250	$0.07,0.0$	3	28	0.0	15	22	3.2

\# of evts for the $\mathbf{Z}_{1,2}$ DY production within $\left|\mathbf{M}_{\mathrm{inv}}(I+--)-\mathrm{M}_{\mathrm{i}}\right|<\Gamma_{\mathrm{i}}$
$\sigma=N_{\mathrm{evt}}^{\mathrm{sig}} / \sqrt{N_{\mathrm{evt}}^{\mathrm{tot}}}$ for an integrated luminosity $\mathrm{L}=10 \mathrm{fb}^{-1}$

Discovery @ LHC 14TeV

Luminosity needed for a 5σ discovery for the maximum coupling allowed by EWPT

Luminosity needed for a 5σ discovery versus the electronboson left handed coupling ($\mathrm{M}_{1}=1 \mathrm{TeV}, \mathrm{M}_{2}=1.25 \mathrm{TeV}$)

Discovery @ LHC 14TeV

 DY-processes in the neutral channel, Z_{1}, Z_{2} exchange

L=100fb-1
acceptance cuts:
$\eta(I)<2.5, \mathrm{Pt}(I)>20 \mathrm{GeV}$

$$
\frac{S}{\sqrt{S+B}}>5
$$

within $\left|\mathbf{M}_{\text {inv }}(I+I-)-\mathbf{M}_{\mathrm{i}}\right|<\Gamma_{\mathrm{i}}$ (i=1,2)
(in the coupling the electric charge -e is factorized)

Tevatron: direct limit from neutral DY electron channels for $L=3.6 \mathrm{fb}^{-1}$

$\mathrm{W}_{1}, \mathrm{~W}_{2} \mathrm{D}-\mathrm{Y}$ production @ the LHC 14 TeV

Z_{i} and W_{i} are nearly degenerate

Total \# of evts in a 10 GeV -bin versus $\mathrm{M}_{\mathrm{T}}(\mathrm{lv})$ for $\mathrm{L}=10 \mathrm{fb}^{-1}$. Sum over e, μ

$\mathrm{W}_{1}, \mathrm{~W}_{2}$ D-Y production @ the LHC 14 TeV

$M_{1,2}(\mathrm{GeV})$	$b_{1,2}$	$M_{t}^{c u t}(\mathrm{GeV})$	$N_{\mathrm{evt}}^{\mathrm{sig}}\left(W_{1}\right)$	$N_{\mathrm{evt}}^{\mathrm{tot}}\left(W_{1}\right)$	$\sigma\left(W_{1}\right)$	$N_{\mathrm{evt}}^{\mathrm{sig}}\left(W_{2}\right)$	$N_{\mathrm{evt}}^{\mathrm{tot}}\left(W_{2}\right)$	$\sigma\left(W_{2}\right)$
1)	500,1250	$-0.05,0.09$	400	36	2435	0.7	776	2214
2)	500,1250	$0.06,0.02$	400	0	2609	0	1	1807
3)	1000,1250	$-0.08,0.03$	700	808	1230	23.0	1112	1189
4)	1000,1250	$0.07,0.0$	700	12	443	0.6	17	82.3

\# of evts for the $\mathbf{W}_{1,2}$ DY-production for $M_{t}\left(l \nu_{l}\right)>M_{t}^{\text {cut }}$ $\sigma=N_{\mathrm{evt}}^{\mathrm{sig}} / \sqrt{N_{\text {evt }}^{\mathrm{tot}}}$ for an integrated luminosity $\mathrm{L}=10 \mathrm{fb}^{-1}$

The statistical significance for the W's production can be a factor 2 bigger than for the \mathbf{Z} 's but it is less clean.

Neutral and charged channel are complementary
All six extra gauge bosons could be investigated at the LHC start-up with $L \sim 1-2$ fb-1 for $M_{1,2}<1 \mathrm{TeV}$

Conclusions

- Higher dimensional gauge theories naturally suggest the possibility of Higgsless theories
- Linear moose models provide an effective description of Higgsless theories. They are calculable and not excluded by the EW precision measurements
- They describe new spin-1 gauge bosons which delay the unitarity violation to energy scales higher than those probed at the LHC
- Drell-Yan processes are a very good channel to discover these extra gauge bosons at the LHC already in the first stage with 7 TeV and $\mathrm{L}=1 \mathrm{fb}^{-1}$
- $A_{F B}$ for distinguishing among various models with Z^{\prime}, peak height, line shape off the peak,

Di-boson production and VBS in progress
interesting because $\mathrm{V}_{1}=$ vector and $\mathrm{V}_{2}=$ axial vector (broken by weak ints)

Hard to compete with the Higgs boson but interesting mechanism with heavy spin-1 resonances

extra slides

To describe a non-linear theory breaking \mathbf{G} to H , we do the following:

- Introduce a mapping $g(x)$ from the space-time to the group G :

$$
\mathrm{g}(\mathrm{x}) \in \mathrm{G}
$$

- Contruct a lagrangian invariant under

$$
\begin{gathered}
\mathrm{g}(\mathrm{x}) \rightarrow \mathrm{g}^{\prime}(\mathrm{x})=\mathrm{g}_{0} \mathrm{~g}(\mathrm{x}) \mathrm{h}(\mathrm{x}), \mathrm{g}_{0} \in \mathrm{G}, \mathrm{~h}(\mathrm{x}) \in \mathrm{H}, \mathrm{H} \subset \mathrm{G} \\
\mathrm{~L}\left(\mathrm{~g}, \partial_{\mu} \mathrm{g}\right)=\mathrm{L}\left(\mathrm{~g}^{\prime}, \partial_{\mu} \mathrm{g}^{\prime}\right)
\end{gathered}
$$

- L depends only on the fields defined on the coset G/H. In fact, locally

$$
\mathrm{g}(\mathrm{x})=\xi(\mathrm{x}) \mathrm{h}(\mathrm{x}), \quad \xi \in \mathrm{G} / \mathrm{H}, \quad \mathrm{~h} \in \mathrm{H}
$$

and using the invariance of L :

$$
\mathrm{L}\left(\mathrm{~g}, \partial_{\mu} \mathrm{g}\right)=\mathrm{L}\left(\xi, \partial_{\mu} \xi\right), \quad \mathrm{g}(\mathrm{x}) \rightarrow \mathrm{g}(\mathrm{x}) \mathrm{h}^{-1}(\mathrm{x})
$$

The theory formulated in G with the (non-dynamical) local symmetry H is equivalent to the non-linear model formulated over G/H

Can the linear moose considered so far, be derived by discretizing a SU(2) gauge theory in 5D compactified on an interval?

To describe the moose structure including the breaking, one needs kinetic terms on the branes plus BC's. In the case of a conformally flat metric along the fifth direction, the complete action for a SU(2)-moose would be

$$
\begin{gathered}
\mathrm{S}=-\frac{1}{4} \int \mathrm{~d}^{4} \mathrm{x} \int_{0}^{\pi \mathrm{R}} \mathrm{dze}^{-\mathrm{A}(\mathrm{z})} \frac{1}{\mathrm{~g}_{5}^{2}(\mathrm{z})}\left[\left(\mathrm{F}_{\mu \nu}^{\mathrm{a}}\right)^{2}-2\left(\mathrm{~F}_{\mu 5}^{\mathrm{a}}\right)^{2}\right]+ \\
-\frac{1}{4} \int \mathrm{~d}^{4} \mathrm{x} \int_{0}^{\pi \mathrm{R}} \mathrm{dze} \mathrm{e}^{-\mathrm{A}(\mathrm{z})}\left[\frac{1}{\tilde{\mathrm{~g}}^{2}}\left(\mathrm{~F}_{\mu \nu}^{\mathrm{a}}\right)^{2} \delta(\mathrm{z})+\frac{1}{\tilde{\mathrm{~g}}^{\prime 2}}\left(\mathrm{~F}_{\mu \nu}^{3}\right)^{2} \delta(\mathrm{z}-\pi \mathrm{R})\right] \\
\mathrm{BC}^{\prime} \mathrm{S}:\left.\quad \mathrm{A}_{\mu}^{1,2}\right|_{z=\pi R}=0,\left.\quad \partial_{\mathrm{z}} \mathrm{~A}_{\mu}^{\mathrm{a}}\right|_{z=0}=0
\end{gathered}
$$

- Introducing the link variables $\quad \sum_{i}=e^{-i A_{5}^{i}}, \quad \mathbf{i}=1, \ldots, K+1$

$$
\mathrm{S}_{\text {moose }}=\int \mathrm{d}^{4} \mathrm{x}\left(-\sum_{\mathrm{i}=1}^{\mathrm{K}} \frac{1}{2 \mathrm{~g}_{\mathrm{i}}^{2}} \operatorname{Tr}\left[\mathrm{~F}_{\mu \nu}^{\mathrm{i}} \mathrm{~F}^{\mu v i}\right]+\sum_{\mathrm{i}=1}^{\mathrm{K}+1} \mathrm{f}_{\mathrm{i}}^{2} \operatorname{Tr}\left[\left(\mathrm{D}_{\mu} \Sigma_{\mathrm{i}}\right)\left(\mathrm{D}_{\mu} \Sigma_{\mathrm{i}}\right)^{\dagger}\right]\right)
$$

$$
\mathrm{ae}^{-\mathrm{A}_{\mathrm{i}}} / \mathrm{g}_{5 \mathrm{i}}^{2}=1 / \mathrm{g}_{\mathrm{i}}^{2}, \quad \mathrm{e}^{-\mathrm{A}_{\mathrm{i}}} /\left(\mathrm{ag}_{5 \mathrm{i}}^{2}\right)=\mathrm{f}_{\mathrm{i}}^{2}
$$

FLAT METRIC:

$$
\mathrm{A}_{\mu}^{1}=\mathrm{W}_{\mu}^{\mathrm{a}} \tau_{\mathrm{a}} / 2, \quad \mathrm{~A}_{\mu}^{\mathrm{K}+1}=\mathrm{Y}^{\mu} \tau_{3} / 2
$$

$$
\mathrm{f}_{\mathrm{i}}=\mathrm{f}_{\mathrm{c}}, \quad \mathrm{~g}_{\mathrm{i}}=\mathrm{g}_{\mathrm{c}}, \quad \mathrm{e}^{-\mathrm{A}_{\mathrm{i}}}=1, \quad \mathrm{~g}_{5 \mathrm{i}}^{2}=\mathrm{ag}_{\mathrm{c}}^{2}
$$

Mass spectrum (charged sector): $f_{i}=f_{c} ; g_{i}=g_{c} ; x=g / g_{c}$

$$
\begin{gathered}
M^{2}=g_{c}^{2} f_{c}^{2}\left(\begin{array}{cccccc}
x^{2} & -x & 0 & \ldots & 0 & 0 \\
-x & 2 & -1 & \ldots & 0 & 0 \\
0 & -1 & 2 & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 2 & -1 \\
0 & 0 & 0 & \ldots & -1 & 2
\end{array}\right)
\end{gathered}
$$

$\mathrm{K}=1 \quad \mathrm{M}_{1}^{2}=\mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}$
$\mathrm{K}=2 \quad \mathrm{M}_{1}^{2}=\frac{3}{4} \mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}, \quad \mathrm{M}_{2}^{2}=\frac{9}{4} \mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}, \quad\left(\mathrm{z}=\frac{1}{\sqrt{3}}\right)$
$\mathrm{K}=3 \quad \mathrm{M}_{1}^{2} \simeq 0.6 \mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}, \quad \mathrm{M}_{2}^{2}=2 \mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}, \quad \mathrm{M}_{3}^{2} \simeq 3.4 \mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}$
Ex: $\quad g_{c} \sim 2 \div 2.5, \quad M_{1}=500 \mathrm{GeV}, \quad M_{2}=900 \mathrm{GeV}, \quad M_{3}=1200 \mathrm{GeV}, \ldots$. $g_{c} \sim 4 \div 5, \quad M_{1}=1000 \mathrm{GeV}, M_{2}=1800 \mathrm{GeV}, M_{3}=2400 \mathrm{GeV}, \ldots$.

Bounds from $W_{L} W_{L}$ elastic scattering amplitude

$\mathcal{A}(s, t, u)=i \mathcal{A}\left(\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}\right)=\frac{s}{v^{2}}-\frac{G_{V}^{2}}{v^{4}}\left[3 s+M_{V}^{2}\left(\frac{s-u}{t-M_{V}^{2}}+\frac{s-t}{u-M_{V}^{2}}\right)\right]$,

$$
a_{0}^{0}=\frac{M_{V}^{2}}{16 \pi v^{2}}\left\{x\left(1-\frac{3 G_{V}^{2}}{v^{2}}\right)+\frac{2 G_{V}^{2}}{v^{2}}\left[\left(2+x^{-1}\right) \log (x+1)-1\right]\right\}, \quad x=\frac{s}{M_{V}^{2}} .
$$

The Higgsless 4-site Linear Moose model

$\begin{aligned} & \text { EW precision tests } \\ & \text { Calculations } \mathrm{O}\left(\mathrm{e}^{2} / \mathrm{g}_{1}{ }^{2}\right) \text {, exact in b1, b2 }\end{aligned} \varepsilon_{1,2} \approx \mathrm{O}\left(\mathrm{b}^{2}\right), \quad \varepsilon_{3} \approx\left(\frac{\mathrm{~g}^{2}}{2 \mathrm{~g}_{1}^{2}}\left(1-\mathrm{z}^{4}\right)-\frac{\mathrm{b}}{2}\right)$
$M_{1}=1000 \mathrm{GeV}$ and $\mathrm{M}_{2}=\mathbf{1 3 0 0} \mathrm{GeV}$

$$
\mathrm{b}=\frac{\mathrm{b}_{1}+\mathrm{b}_{2}-\left(\mathrm{b}_{1}-\mathrm{b}_{2}\right) \mathrm{z}^{2}}{1+\mathrm{b}_{1}+\mathrm{b}_{2}}
$$

Bounds on charged couplings (and masses) from low energy precision measurements ε_{i}

$$
\epsilon_{3} \sim \frac{a_{1}^{c}}{g_{1}}-z^{2} \frac{a_{2}^{c}}{g_{1}}
$$

ε_{3} bounds favour $\mathrm{a}_{2}>\mathrm{a}^{\mathrm{c}}{ }_{1}$

$$
-0.1<\mathbf{a}_{1,2}^{c}\left(W_{1,2} \mathbf{f f}\right)<0.25
$$

for larger $\mathrm{M}_{1,2}$ the bounds from ε_{1} are less stringent

Fine - tuning

The values of b_{1} and b_{2} allowed by precision electroweak data are narrowly constrained to a strip by ε_{3}

What level of fine- tuning is implied?

Assuming the standard definition of fine tuning (see for ex. Barbieri and Giudice, 1988)

$$
\Delta=\left|\frac{a_{i}}{\epsilon_{3}} \frac{\partial \epsilon_{3}\left(a_{i}\right)}{\partial a_{i}}\right|, \quad a_{i}=g_{1}, b_{1}, b_{2}
$$

so that a percentage variation of any of the parameters a_{i} corresponds to a percentage variation of ε_{3} which is Δ-times larger,
we get $\Delta \sim 10 \quad$ which amounts to tolerate in ε_{3} cancellations among the parameters of, at most, one order of magnitude

The Higgsless 4-site Linear Moose model

region of validity of the perturbative expansion
$\left(\mathrm{g} / \mathrm{g}_{1}\right)^{4}<0.005$

Drell-Yan process $\mathrm{pp} \rightarrow \mathrm{W}, \mathrm{W}_{1}, \mathrm{~W}_{2} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$at the LHC 7 TeV L=1 fb^{-1}

Z_{1}, Z_{2} D-Y production @ the LHC 14TeV L=10 fb-1

Total \# of evts in a 10 GeV -bin versus $\mathrm{M}_{\text {inv }}(|+|-)$ for $\mathrm{L}=10 \mathrm{fb}^{-1}$. Sum over e, μ

$\mathrm{W}^{\prime}{ }_{1} \mathrm{~W}^{\prime}{ }_{2}$ production

$\left(\mathrm{M}_{1}, \mathrm{M}_{2}\right) \mathrm{GeV}$

Total \# of evts in a 10 GeV -bin versus $\mathrm{M}_{\mathrm{T}}(\mathrm{lv})$ for $\mathrm{L}=10 \mathrm{fb}^{-1}$. Sum over e, μ

How to distinguish the various models? Forward-backward asymmetry A_{FB} in $\mathrm{pp} \rightarrow I^{+} I^{-}$

Forward-backward asymmetry A_{FB} in $\mathrm{pp} \rightarrow I^{+} I^{-}$

(Dittmar,Nicollerat,Djouadi 03; Petriello,Quackenbush 08)

$$
\begin{gathered}
M_{Z^{\prime} 1}=1.0 \mathrm{TeV} \\
M_{Z^{\prime} 2}=1.3 \mathrm{TeV} \\
M_{Z^{\prime}(\text { SM-like) }}=1.3 \mathrm{TeV}
\end{gathered}
$$

$$
A_{F B}=\left[\frac{d \sigma^{F}}{d M_{\mathrm{inv}}}-\frac{d \sigma^{B}}{d M_{\mathrm{inv}}}\right] /\left[\frac{d \sigma^{F}}{d M_{\mathrm{inv}}}+\frac{d \sigma^{B}}{d M_{\mathrm{inv}}}\right]
$$

On- and off-resonance $A_{F B}$ for a single resonance scenario

-The on-resonance $A_{F B}$ is more pronounced in the 4-site model due to the difference between the left and the right-handed fermion-boson couplings
-The off-resonance $A_{F B}$ could reveal the double-resonant structure not appreciable in the dilepton invariant mass distribution

Discovery @ LHC 7 TeV

Luminosity needed for a 5σ discovery for the maximum coupling allowed by EWPT

Luminosity needed for a 5σ discovery versus the electronboson left handed coupling ($\mathrm{M}_{1}=0.8 \mathrm{TeV}, \mathrm{M}_{2}=1 \mathrm{TeV}$)

The low-edge of the spectrum detectable @ LHC 7 TeV with $\mathrm{L}<1 \mathrm{fb}^{-1}$

Drell-Yan process $\mathrm{pp} \rightarrow \gamma, \mathrm{Z}, \mathrm{Z}_{1}, \mathrm{Z}_{2} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$at the LHC 7 TeV $\mathrm{L}=1 \mathrm{fb}^{-1}$

same distributions with linear scale

