Chiral Effective Theory with a scalar field

Joan Soto

Departament d'Estructura i Constituents de la Matèria

and

Institut de Ciències del Cosmos

Universitat de Barcelona

(with Pere Talavera and Jaume Tarrús, in progress)

 ${\color{red} \bullet}$ QCD developes an intrinsic scale Λ_{χ} .

- $lue{}$ QCD developes an intrinsic scale Λ_χ .

- ullet QCD developes an intrinsic scale Λ_χ .
- $\Lambda_{\chi} \gg m_q$, m_q being the light quark masses.
- \mathcal{L}_{QCD} enjoys an approximate $SU_L(n_f)\otimes SU_R(n_f)$ chiral symmetry.

- ullet QCD developes an intrinsic scale Λ_χ .
- \mathcal{L}_{QCD} enjoys an approximate $SU_L(n_f)\otimes SU_R(n_f)$ chiral symmetry.
- It is spontaneously broken to $SU_V(n_f)$.

- ullet QCD developes an intrinsic scale Λ_χ .
- \mathcal{L}_{QCD} enjoys an approximate $SU_L(n_f)\otimes SU_R(n_f)$ chiral symmetry.
- ullet It is spontaneously broken to $SU_V(n_f)$.
- There are quasi Goldstone bosons with masses $m_\pi \ll \Lambda_\chi$.

- ullet QCD developes an intrinsic scale Λ_χ .
- \mathcal{L}_{QCD} enjoys an approximate $SU_L(n_f)\otimes SU_R(n_f)$ chiral symmetry.
- ullet It is spontaneously broken to $SU_V(n_f)$.
- There are quasi Goldstone bosons with masses $m_\pi \ll \Lambda_\chi$.
- An effective Lagrangia for $p\sim m_\pi\ll \Lambda_\chi$ can be use to describe their physics, the Chiral Lagrangian.

- ullet QCD developes an intrinsic scale Λ_χ .
- \mathcal{L}_{QCD} enjoys an approximate $SU_L(n_f)\otimes SU_R(n_f)$ chiral symmetry.
- ullet It is spontaneously broken to $SU_V(n_f)$.
- There are quasi Goldstone bosons with masses $m_\pi \ll \Lambda_\chi$.
- An effective Lagrangia for $p \sim m_\pi \ll \Lambda_\chi$ can be use to describe their physics, the Chiral Lagrangian.

The Chiral Lagrangian $(n_f = 2)$

$$\mathcal{L}_{\chi \text{PT}} = \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \cdots$$

$$\mathcal{L}^{(2)} = \frac{F^2}{4} \langle D^{\mu} U^+ D_{\mu} U + \chi^+ U + U^+ \chi \rangle , \quad \chi = 2B_0 m_q$$

$$\mathcal{L}^{(4)} = \frac{l_1}{4} \langle D^{\mu} U^{+} D_{\mu} U \rangle^{2} + \frac{l_2}{4} \langle D^{\mu} U^{+} D^{\nu} U \rangle \langle D_{\mu} U^{+} D_{\nu} U \rangle + \frac{l_3}{16} \langle \chi^{+} U + U^{+} \chi \rangle^{2} + \frac{l_4}{4} \langle D^{\mu} U^{+} D_{\mu} \chi + D^{\mu} \chi^{+} D_{\mu} U \rangle$$

Weinberg (79)

Gasser, Leutwyler (84)

• Generalize the Chiral Lagragian to include a light scalar with mass $m_\sigma \ll \Lambda_\chi$

• The calculations can be systematically organized in powers of p^2/Λ_χ^2 , m_π^2/Λ_χ^2 , and $m_\sigma^2/\Lambda_\chi^2$

- The calculations can be systematically organized in powers of p^2/Λ_χ^2 , m_π^2/Λ_χ^2 , and $m_\sigma^2/\Lambda_\chi^2$
- Explore the physical consequences of such generalization

$$\sqrt{s_{\sigma}} \sim 441 - i272$$

A resonance exists at a relatively low mass,

$$\sqrt{s_{\sigma}} \sim 441 - i272$$

Caprini, Colangelo, Leutwyler (05); Leutwyler (08)

 $\sim \chi$ PT breaks down earlier than expected, at least in the scalar chanel.

A resonance exists at a relatively low mass,

$$\sqrt{s_{\sigma}} \sim 441 - i272$$

- $\sim \chi$ PT breaks down earlier than expected, at least in the scalar chanel.
- Proposed solutions typically involve resummations (unitarization methods), e.g. Oller, Oset, Pelaez (98).

A resonance exists at a relatively low mass,

$$\sqrt{s_{\sigma}} \sim 441 - i272$$

- $\sim \chi$ PT breaks down earlier than expected, at least in the scalar chanel.
- Proposed solutions typically involve resummations (unitarization methods), e.g. Oller, Oset, Pelaez (98).
- Can one carry out systematically these resummations in an EFT framework?

$$\sqrt{s_{\sigma}} \sim 441 - i272$$

- $\sim \chi$ PT breaks down earlier than expected, at least in the scalar chanel.
- Proposed solutions typically involve resummations (unitarization methods), e.g. Oller, Oset, Pelaez (98).
- Can one carry out systematically these resummations in an EFT framework?
- Try including a scalar in the Chiral Lagrangian

• \mathcal{L}_{CT} is obtained from $\mathcal{L}_{\chi \rm PT}$ by multiplying the terms in the latter by powers of $m_{\sigma}^2/\Lambda_{\chi}^2$.

e.g.

$$\mathcal{L}_{CT}^{(4)} = Z_1 m_{\sigma}^2 \langle \chi^{\dagger} U + U^{\dagger} \chi \rangle + Z_2 m_{\sigma}^2 \langle D^{\mu} U^{\dagger} D_{\mu} U \rangle$$

$$\mathcal{L}^{\sigma}_{\chi \text{PT}+\sigma} = \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma \sigma - \frac{\lambda_{3}}{3!} \sigma^{3} - \frac{\lambda_{4}}{4!} \sigma^{4} + \cdots$$

$$\bullet$$
 $\lambda_3 \sim O(\Lambda_\chi)$, $\lambda_4 \sim O(1)$

- \bullet $\lambda_3 \sim O(\Lambda_\chi)$, $\lambda_4 \sim O(1)$
- Hence, strongly coupled (!)

- \bullet $\lambda_3 \sim O(\Lambda_\chi)$, $\lambda_4 \sim O(1)$
- Hence, strongly coupled (!)
- But scalar theories beyond perturbation theory are believed to be trivial

- \bullet $\lambda_3 \sim O(\Lambda_\chi)$, $\lambda_4 \sim O(1)$
- Hence, strongly coupled (!)
- But scalar theories beyond perturbation theory are believed to be trivial
 - Take $\lambda_3 = \lambda_4 = 0$

- \bullet $\lambda_3 \sim O(\Lambda_\chi)$, $\lambda_4 \sim O(1)$
- Hence, strongly coupled (!)
- But scalar theories beyond perturbation theory are believed to be trivial
 - \bullet Take $\lambda_3 = \lambda_4 = 0$
 - $\, \blacksquare \,$ It is enough to assume them suppressed by powers of $m_\sigma^2/\Lambda_\chi^2$

$$\mathcal{L}_{\chi PT+\sigma}^{\pi\sigma} = \left(F_1 \sigma + c_1 \sigma \sigma + \zeta_1 \sigma^3 + \cdots \right) \langle D^{\mu} U^{\dagger} D_{\mu} U \rangle + \left(F_2 \sigma + c_2 \sigma \sigma + \zeta_2 \sigma^3 + \cdots \right) \langle \chi^{\dagger} U + U^{\dagger} \chi \rangle$$

- $F_i \sim O(\Lambda_{\chi})$, $c_i \sim O(1)$, $\zeta_i \sim O(\frac{1}{\Lambda_{\chi}})$, i = 1, 2
- \bullet $\delta m_{\sigma}^2 \sim c_2 B_0 m_q$ is induced.
- In the linear sigma model $F_1 = F/2$, $c_1 = 1/4$, $\zeta_1 = 0$.

The calculations

A considerable number of new LECs appear

The calculations

- A considerable number of new LECs appear
- Using lattice data will be necessary to fix them up

The calculations

- Using lattice data will be necessary to fix them up
- Plan:
 - Calculate $m_{\pi}(m_q)$
 - Calculate $f_{\pi}(m_q)$
 - Compare with lattice data

$m_{\pi}(m_q)$

Dotted line: pion propagator , Solid line: scalar propagator

$m_\pi(m_q)$

$$m_{\pi,phys}^{2} = m_{\pi}^{2} \left(1 - \frac{A[m_{\pi}^{2}]}{2F^{2}} + \frac{2m_{\pi}^{2}}{F^{2}} l_{3} + (c_{1} - c_{2}) \frac{4A[m_{\sigma}^{2}]}{F^{2}} \right)$$

$$+ \frac{4F_{1}}{F^{4}} \left(\left(m_{\sigma}^{2} - 4m_{\pi}^{2} \right) F_{1} + 4m_{\pi}^{2} F_{2} \right) A[m_{\sigma}^{2}]$$

$$- \frac{4}{F^{4}} \left(\left(m_{\sigma}^{2} - 2m_{\pi}^{2} \right) F_{1} + 2m_{\pi}^{2} F_{2} \right)^{2} B[m_{\pi}^{2}, m_{\sigma}^{2}, m_{\pi}^{2}]$$

$$- \frac{4F_{1}}{F^{4}} \left(\left(m_{\sigma}^{2} - 2m_{\pi}^{2} \right) F_{1} + 4m_{\pi}^{2} F_{2} \right) A[m_{\pi}^{2}] + Z_{1} \frac{m_{\pi}^{2} m_{\sigma}^{2}}{F^{2}}$$

$$\begin{split} A[m^2] &= \frac{m^2}{16\pi} \left(\lambda_0 - \ln\left(\frac{m^2}{\mu^2}\right) \right) \,, \quad \lambda_0 = \frac{1}{\epsilon} - \gamma_e + \ln(4\pi) + 1 \\ B[m_1^2, m_2^2, m_1^2] &= \frac{1}{16\pi^2} \left(\lambda_0 + 1 - \ln\left(\frac{m_1^2}{\mu^2}\right) - \frac{m_2^2}{2m_1^2} \ln\left(\frac{m_2^2}{m_1^2}\right) \right. \\ &\quad + \frac{m_2^2}{m_1^2} \sqrt{1 - \frac{4m_1^2}{m_2^2}} ArcTanh\left(\sqrt{1 - \frac{4m_1^2}{m_2^2}}\right) \right) \end{split}$$

$m_\pi(m_q)$

Comments:

- ullet l_3 absorbs new divergences from loops involving the scalar particle.
- ullet A couterterm proportional to B_0 (Z_1) must be included.
- In the chiral limit, $m_{\pi,phys}^2 \to 0$.

$$m_{\pi,phys}^2 \to \frac{-4F_1^2 m_{\sigma}^4}{F^4} B[0, m_{\sigma}^2, 0] + \frac{4F_1^2 m_{\sigma}^2}{F^4} A[m_{\sigma}^2] = 0$$

Wavy line: axial-vector current

$f_{\pi}(m_q)$

$$F_{\pi} = F\left(1 + \frac{l_{4}m_{\pi}^{2}}{F^{2}} + \frac{A[m_{\pi}^{2}]}{F^{2}} + \frac{4m_{\sigma}^{2}Z_{2}}{F^{2}} + \frac{4F_{1}}{F^{4}m_{\pi}^{2}}(m_{\pi}^{2} - m_{\sigma}^{2})(F_{1}(2m_{\pi}^{2} - m_{\sigma}^{2}) - 2F_{2}m_{\pi}^{2})B[m_{\pi}^{2}, m_{\sigma}^{2}, m_{\pi}^{2}] - \frac{2}{F^{4}m_{\pi}^{2}}\left(c_{1}F^{2}m_{\pi}^{2} + F_{1}(F_{1}(2m_{\sigma}^{2} - 5m_{\pi}^{2}) + 4F_{2}m_{\pi}^{2})\right)A[m_{\sigma}^{2}] + \frac{1}{F^{4}m_{\pi}^{2}}\left(2F_{1}(F_{1}(2m_{\sigma}^{2} - 3m_{\pi}^{2}) + 4F_{2}m_{\pi}^{2})\right)A[m_{\pi}^{2}] - \frac{2}{F^{4}}(2F_{2}m_{\pi}^{2} + F_{1}(m_{\sigma}^{2} - 2m_{\pi}^{2}))^{2}\frac{dB[m_{\pi}^{2}, m_{\sigma}^{2}, p^{2}]}{dp^{2}}\Big|_{p^{2}=m_{\pi}^{2}}\right)$$

$$\begin{split} \frac{dB[m_1^2, m_2^2, p^2]}{dp^2} \bigg|_{p^2 = m_1^2} &= -\frac{1}{16\pi^2 m_1^2} \left(1 + \frac{(m_1^2 - m_2^2)}{2m_1^2} \ln\left(\frac{m_2^2}{m_1^2}\right) + \frac{m_2^2}{m_1^2} \sqrt{1 - \frac{4m_1^2}{m_2^2}} ArcTanh\left(\sqrt{1 - \frac{4m_1^2}{m_2^2}}\right) + \frac{1}{\sqrt{1 - \frac{4m_1^2}{m_2^2}}} ArcTanh\left(\sqrt{1 - \frac{4m_1^2}{m_2^2}}\right) \right) \end{split}$$

$f_{\pi}(m_q)$

Comments:

- ullet l_4 absorbs new divergences from loops involving the scalar particle.
- A couterterm proportional to F^2 (\mathbb{Z}_2) must be included.
- $lue{}$ In the chiral limit, F_π^2 remains finite.

Decoupling

• When $m_{\sigma}\gg m_{\pi}$ one should recover the standard $\chi {\rm PT}$ results

Decoupling

- When $m_{\sigma}\gg m_{\pi}$ one should recover the standard $\chi {\rm PT}$ results
- One actually does, with the following redefinitions:

$$B_0 \to B_0 \left(1 - 4 \left(\frac{c_2 - c_1}{F^2} + \frac{F_1^2}{F^4} \right) A[m_\sigma] + \frac{4Z_1 m_\sigma^2}{F^2} - \frac{F_1^2 m_\sigma^2}{8\pi^2 F^4} \right)$$

$$F \to F \left(1 - 2 \left(\frac{c_1}{F^2} - \frac{F_1^2}{F^4} \right) A[m_\sigma] + \frac{4Z_2 m_\sigma^2}{F^2} - \frac{F_1^2 m_\sigma^2}{16\pi^2 F^4} \right)$$

What does lattice data say?

ETM Collaboration, R. Baron et al., arXiv:0911.5061

	$a\mu_q$	am_{PS}	af_{PS}	$am_{ m PCAC}$	r_0/a	L/a
$\overline{A_1}$	0.0060	0.1852(9)	0.0770(8)	+0.0019(4)	4.321(32)	24
A_2	0.0080	0.2085(8)	0.0835(4)	+0.0008(3)	4.440(34)	24
A_3	0.0110	0.2424(5)	0.0892(3)	-0.0002(5)	4.362(21)	24
A_4	0.0165	0.2957(5)	0.0969(2)	-0.0017(2)	4.264(14)	24
A_5	0.0060	0.1831(6)	0.0784(4)	+0.0005(4)	NA	20
$\overline{B_1}$	0.0040	0.1362(7)	0.0646(4)	+0.00017(17)	5.196(28)	24
B_2	0.0064	0.1694(4)	0.0705(4)	-0.00009(17)	5.216(27)	24
B_3	0.0085	0.1940(5)	0.0742(2)	-0.00052(17)	5.130(28)	24
B_4	0.0100	0.2100(5)	0.0759(4)	-0.00097(26)	5.143(25)	24
B_5	0.0150	0.2586(7)	0.0830(3)	-0.00145(42)	5.039(24)	24
B_6	0.0040	0.1338(2)	0.0663(2)	+0.00022(11)	5.259(21)	32
B_7	0.0030	0.1167(4)	0.0633(3)	+0.00030(14)	NA	32

$$A_i$$
: $\beta = 3.8$, B_i : $\beta = 3.9$

What does lattice data say?

ETM Collaboration, R. Baron et al., arXiv:0911.5061

	$a\mu_q$	$am_{ m PS}$	af_{PS}	$am_{ m PCAC}$	r_0/a	L/a
$\overline{C_1}$	0.003	0.1038(6)	0.0500(4)	+0.00036(14)	6.584(34)	32
C_2	0.006	0.1432(6)	0.0569(2)	-0.00004(14)	6.509(38)	32
C_3	0.008	0.1651(5)	0.0595(2)	-0.00065(13)	6.494(36)	32
C_4	0.012	0.2025(6)	0.0644(2)	-0.00092(14)	6.284(22)	32
C_5	0.006	0.1448(11)	0.0558(5)	-0.00027(19)	NA	24
C_6	0.006	0.1520(15)	0.0508(5)	+0.00002(20)	NA	20
$\overline{D_1}$	0.0020	0.0740(3)	0.0398(2)	+0.00006(6)	8.295(45)	48
D_2	0.0065	0.1326(5)	0.0465(3)	-0.00032(11)	8.008(29)	32

$$C_i$$
: $\beta = 4.05$, D_i : $\beta = 4.20$

• Chiral extrapolations in χPT and $\chi PT+\sigma$, (Schindler, Phillips (08)).

$m_\pi(m_q)$

$f_{\pi}(m_q)$

Results from the fit

	χ PT	χ PT+ σ
χ^2/dof	3.01	0.8733
\overline{F}	92 MeV	92 MeV
m_{σ}^{phys}		400 MeV
B_0	2313 MeV	1683 MeV
$l_3(770)$	$-0.329*10^{-3}$	$9.51 * 10^{-4}$
$l_4(770)$	$5.02 * 10^{-3}$	$8.97 * 10^{-4}$
F_1		-0.560F
F_2		0.460F
c_1		0.519
c_2		-0.777

 A consistent chiral effective theory including a light scalar can be built.

- A consistent chiral effective theory including a light scalar can be built.
- It leads to distinct quark mass dependence of physical observables, which for m_{π} and f_{π} is:

- A consistent chiral effective theory including a light scalar can be built.
- It leads to distinct quark mass dependence of physical observables, which for m_{π} and f_{π} is:
 - Compatible with lattice data,

- A consistent chiral effective theory including a light scalar can be built.
- It leads to distinct quark mass dependence of physical observables, which for m_{π} and f_{π} is:
 - Compatible with lattice data,
 - lacktriangle Favoured with respect to standard χ PT.

- A consistent chiral effective theory including a light scalar can be built.
- It leads to distinct quark mass dependence of physical observables, which for m_{π} and f_{π} is:
 - Compatible with lattice data,
 - $lue{}$ Favoured with respect to standard χ PT.
- It may lead, in combination with lattice data, to an improved description of low energy QCD, in particular in the scalar sector.

