QCD challenges in radiative B decays

Mikołaj Misiak

(University of Warsaw and Karlsruhe Institute of Technology)

1. Motivation
2. Perturbative calculations
3. Non-perturbative effects
4. Summary

Information on electroweak-scale physics in the $b \rightarrow s \gamma$ transition is encoded in an effective low-energy local interaction:

Basic properties:

- Sensitivity to new physics at scales (a few) $\times \mathcal{O}(100 \mathrm{GeV})$ with the present th/exp accuracy, even in models with Minimal Flavour Violation (MFV). For instance, charged Higgs (THDM-II) effects for $M_{H}=500(1000) \mathrm{GeV}$ exceed $35 \%(14 \%)$ in the electroweak-scale coupling $C_{7}\left(\mu_{0}\right)$, and $18 \%(7 \%)$ in the inclusive $\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma$ decay rate.
- Perturbative calculability of the inclusive rate

$$
\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\Gamma\left(b \rightarrow X_{s}^{p} \gamma\right)_{E_{\gamma}>E_{0}}+\left(\begin{array}{c}
\begin{array}{c}
\text { non-perturbative effects } \\
\text { see Benze e et all, arrXiv:1003.5012 }
\end{array}
\end{array}\right)
$$

provided E_{0} is large $\left(E_{0} \sim m_{b} / 2\right)$ but not too close to the endpoint $\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)$.

- The known/estimated NNLO $\mathcal{O}\left(\alpha_{s}^{2}\right)$ contributions to the partonic rate are $\sim \mathcal{O}(10 \%)$.

An uncertainty of $\pm 3 \%$ is assumed for the unknown part.

The measured photon energy spectra:

Combination of the results and extrapolation of the integrated rates to $E_{0}=1.6 \mathrm{GeV}$ are performed in the same step, to minimize model-dependence.

Non-perturbative cutoff-related TH uncertainties in the integrated rate become small for $E_{0} \sim 1.6 \mathrm{GeV}$.
Shape functions (e.g.): [A. Kagan, M. Neubert, hep-ph/9805303], [Z. Ligeti, I. W. Stewart, F.J. Tackmann, arXiv:0807.1926].
DGE model: [J.R. Andersen, E. Gardi, hep-ph/0609250].
Fixed-order $\mathcal{O}\left(\frac{\alpha_{s} \Lambda^{2}}{m_{b}^{2}}\right)$: [T. Ewerth, P. Gambino, S. Nandi,
arXiv:0911.2175].

Results of the SM calculations:

$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E \gamma>1.6 \mathrm{GeV}}^{\mathrm{NNLO}}= \begin{cases}(3.15 \pm 0.23) \times 10^{-4}, & \text { hep-ph/0609232, using the 1S scheme }, \\ (3.26 \pm 0.24) \times 10^{-4}, & \text { following the kin scheme analysis of } \\ & \text { rathe:0805.0271, but } \bar{m}_{c}\left(\bar{m}_{c}\right)^{2 \text { loop }} \\ & \text { rathan } \bar{m}_{c}\left(\bar{m}_{c}\right)^{1 \text { loop }} .\end{cases}$

Experimental world averages:
$\mathcal{B}\left(\bar{B} \rightarrow X_{S} \gamma\right)_{E \gamma}^{\operatorname{EXP}}>1.6 \mathrm{GeV}= \begin{cases}(3.55 \pm 0.26) \times 10^{-4}, & {[\text { [HFAG, winter 2010] },} \\ (3.50 \pm 0.17) \times 10^{-4}, & {[\text { Artuso, Barberio, Stone },} \\ \text { arXiv:0902.3743]. } .\end{cases}$
\Rightarrow Clean signals of new physics - unlikely. (even after reducing the uncertainties by factors of 2 on both sides)
Constraints on new physics - certainly.

Inclusive $\bar{B} \rightarrow X_{s} \gamma$ in the SM :

$\mathcal{B}\left(\bar{B} \rightarrow X_{S} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}= \begin{cases}(3.15 \pm 0.23) \times 10^{-4}, & \begin{array}{l}\text { MM et al., hep-ph/0609232, } \\ \text { using the 1S scheme. }\end{array} \\ (3.26 \pm 0.24) \times 10^{-4}, & \begin{array}{l}\text { following the kinetic scheme analysis } \\ \text { of P. Gambino and P. Giordano } \\ \text { in arXiv:0805.0271. }\end{array}\end{cases}$

Contributions to the total TH uncertainty:

5% non-perturbative $\mathcal{O}\left(\frac{\alpha_{s} \Lambda}{m_{b}}\right), \underbrace{\mathcal{O}\left(\frac{m_{b}^{2} \Lambda^{4}}{m_{c}^{6}}\right), \mathcal{O}\left(\frac{\Lambda^{3}}{m_{b} m_{c}^{2}}\right)}_{?}$,
3% parametric $\left(\alpha_{s}\left(M_{Z}\right), \mathcal{B}_{\text {semileptonic }}^{\exp }, m_{c} \& C, \ldots\right)$.

$$
\begin{array}{lll}
2.0 \% & 1.6 \% & 1.1 \% \text { (1S) } \\
& & 2.5 \% \text { (kin) }
\end{array}
$$

$3 \% m_{c}$-interpolation ambiguity (to be reduced soon),
3% higher order $\mathcal{O}\left(\alpha_{s}^{3}\right)$,

Their sum in quadrature $(\sim 7 \%)$ is close to the current experimental error.

Decoupling of $W, Z, t, H^{0} \Rightarrow$ effective weak interaction Lagrangian:

$$
L_{\text {weak }} \sim \sum C_{i}\left(\mu_{b}\right) Q_{i}
$$

where

Q_{1} differs from Q_{2} only by color structure.
Q_{3}, \ldots, Q_{6} - other 4-quark operators with small Wilson coefficients $C_{i}(\mu)$.
All the $C_{i}(\mu)$ are known up to $\mathcal{O}\left(\alpha_{s}^{2}\right)$ (NNLO) in the SM.
[Bobeth, MM, Urban, 2000], [MM, Steinhauser, 2004], [Gorban, Haisch, 2005], [Gorban, Haisch, MM, 2005], [Czakon, Haisch, MM, 2007].

Examples of SM diagrams for the matching of $C_{7}\left(\mu_{0}\right)$

LO:

[Inami, Lim, 1981]

NLO:
[Adel, Yao, 1993]

NNLO:

[Steinhauser, MM, 2004]

NNLO method:

- Taylor expansion in the off-shell external momenta is applied before integration.
- The UV and spurious IR divergences are regulated dimensionally.
- \Rightarrow In the effective theory, only tree-level diagrams survive (tree vertices and UV counterterms). The UV renormalization constants are known from former anomalous-dimension calculations.
- All the $1 / \epsilon$ poles cancel in the matching equation, i.e. in the difference between the effective theory and the full SM Green functions.
- At the 3-loop level, the difference $m_{t}-M_{W}$ is taken into account with the help of expansions in y^{n} and $\left(1-y^{2}\right)^{n}$ up to $n=8$, where $y=M_{W} / m_{t}$.

Resummation of large logarithms $\left(\alpha_{s} \ln \frac{M_{W}^{2}}{m_{b}^{2}}\right)^{n}$ in the $b \rightarrow s \gamma$ amplitude. RGE for the Wilson coefficients: $\quad \mu \frac{d}{d \mu} C_{j}(\mu)=C_{i}(\mu) \gamma_{i j}(\mu)$

The anomalous dimension matrix $\gamma_{i j}$ is found from the effective theory renormalization constants, e.g.:

[Gaillard, Lee, 1974] [Altarelli, Maiani, 1974]

[Grinstein et al., 1990]

[Shifman et al., 1978]
[Grigjanis et al., 1988]

NLO

[Altarelli et al., 1981] [Chetyrkin, MM, Münz, 1997] [MM, Münz, 1995] [Buras, Weisz, 1990]

All the Wilson coefficients $C_{1}\left(\mu_{b}\right), \ldots, C_{8}\left(\mu_{b}\right)$ are now known at the NNLO in the SM.
[Gorbahn, Haisch, 2004] [Czakon, Haisch, MM, 2006] [Gorbahn, Haisch, MM, 2005]

$$
\sim 2 \times 10^{4} \text { diagrams }
$$

$$
-4 \% \text { effect in the BR }
$$

Perturbative evaluation of $\Gamma\left(b \rightarrow X_{s}^{\mathrm{p}} \gamma\right)$ at $\mu_{b} \sim \frac{m_{b}}{2}$.

$\Gamma\left(b \rightarrow X_{s}^{\mathrm{p}} \gamma\right)_{E_{\gamma}>E_{0}}=\frac{G_{F}^{2} m_{b}^{5} \alpha_{\mathrm{em}}}{32 \pi^{4}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sum_{i, j=1}^{8} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) G_{i j}\left(E_{0}, \mu_{b}\right)$
LO: $G_{i j}=\delta_{i 7} \delta_{j 7}$

$\left|C_{1,2}\left(\mu_{b}\right)\right| \sim 1, \quad\left|C_{3,4,5,6}\left(\mu_{b}\right)\right|<0.07$, $C_{7}\left(\mu_{b}\right) \sim-0.3, \quad C_{8}\left(\mu_{b}\right) \sim-0.15$.

NLO: The most important $G_{i j}(i, j=1,2,7,8)$ are known since 1996. $\left\{\begin{array}{l}\text { [Greub, Hurth, Wyler, 1996] } \\ \text { [Ali, Greub, 1991-1995] }\end{array}\right.$ The remaining $G_{i j}$ are known since 2002.

NNLO: Only $i, j=1,2,7,8$ have been considered so far.
G_{77} is fully known:

G_{78} is fully known:

G_{88} and $G_{28}\left(G_{18}\right):$ Two-particle cuts are known (just $|\mathrm{NLO}|^{2}$).
Three- and four-particle cuts are known in the BLM approximation only:
$\left\{\begin{array}{l}\text { [Ferroglia, Haisch, 2007, unpublished }] \\ {[\text { Poradziński, MM, 2010, to be published }]}\end{array}\right.$

The $m_{c} \gg m_{b} / 2$ limit is known [MM, Steinhauser, 2006]
The BLM approximation is known for arbitrary $m_{c}\left\{\begin{array}{l}\text { [Bieri, Greub, Steinhauser, 2003] } \\ \text { [Ligeti, Luke, Manohar, Wise, 1999] }\end{array}\right.$

Non-BLM correction to G_{27} needs to be interpolated in m_{c}.
Its vanishing at $m_{c}=0$ has been assumed so far.

Beyond BLM, diagrams with massive quark loops on gluon lines are known for all the relevant $G_{i j}$ [Boughezal, Czakon, Schutzmeier, 2007], [Asatrian, Ewerth, Gabrielyan, Greub, 2007], [Ewerth, 2008].

Energetic photon production in charmless decays of the \bar{B}-meson
$\left(E_{\gamma} \gtrsim \frac{m_{b}}{3} \simeq 1.6 \mathrm{GeV}\right.$)
[see MM, arXiv:0911.1651]
A. Without long-distance charm loops:

Dominant, well-controlled.

$\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right), \quad(-1.6 \pm 1.2) \%$.
[Benzke, Lee, Neubert, Paz, 2010]
3. Collinear

$\sim-0.2 \%$ or $(+0.8 \pm 1.1) \%$.
[Kapustin,Ligeti,Politzer, 1995]
[Benzke, Lee, Neubert, Paz, 2010]
4. Annihilation $\left\{\begin{array}{r}6 \\ 6\end{array}\right.$ $(q \bar{q} \neq c \bar{c})$

Exp. $\pi^{0}, \eta, \eta^{\prime}, \omega$ subtracted.
Perturbatively $\sim 0.1 \%$.

B. With long-distance charm loops:

5. Soft

6. Annihilation of $c \bar{c}$ in a heavy $(\bar{c} s)(\bar{q} c)$ state
7. Boosted light $c \bar{c}$ state annihilation

Exp. J / ψ subtracted $(<1 \%)$.
Perturbatively (including hard): $\sim+3.6 \%$.

$$
\begin{array}{rr}
\mathcal{O}\left(\alpha_{s}(\Lambda / M)^{2}\right) & \mathcal{O}\left(\alpha_{s} \Lambda\right. \\
M & \sim 2 m_{c}, 2 E_{\gamma}, m_{b} .
\end{array}
$$

$$
\text { e.g. } \mathcal{B}\left[B^{-} \rightarrow D_{S J}(2457)^{-} D^{*}(2007)^{0}\right] \simeq 1.2 \% \text {, }
$$

$$
\mathcal{B}\left[B^{0} \rightarrow D^{*}(2010)^{+} \bar{D}^{*}(2007)^{0} K^{-}\right] \simeq 1.2 \% .
$$

Goal: calculate the inclusive sum $\left.\Sigma_{X_{s}}\left|C_{7}\left(\mu_{b}\right)\left\langle X_{s} \gamma\right| O_{7}\right| \bar{B}\right\rangle+C_{2}\left(\mu_{b}\right)\left\langle X_{s} \gamma\right| O_{2}|\bar{B}\rangle+\left.\ldots\right|^{2}$
The " 77 " term in this sum is purely "hard". It is related via the optical theorem to the imaginary part of the elastic forward scattering amplitude $\bar{B}(\vec{p}=0) \gamma(\vec{q}) \rightarrow \bar{B}(\vec{p}=0) \gamma(\vec{q})$:

When the photons are soft enough, $m_{X_{s}}^{2}=\left|m_{B}\left(m_{B}-2 E_{\gamma}\right)\right| \gg \Lambda^{2} \Rightarrow$ Short-distance dominance \Rightarrow OPE. However, the $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum is dominated by hard photons $E_{\gamma} \sim m_{b} / 2$.

Once $A\left(E_{\gamma}\right)$ is considered as a function of arbitrary complex E_{γ}, $\operatorname{Im} A$ turns out to be proportional to the discontinuity of A at the physical cut. Consequently,

$$
\int_{1 \mathrm{GeV}}^{E_{\gamma}^{\max }} d E_{\gamma} \operatorname{Im} A\left(E_{\gamma}\right) \sim \oint_{\text {circle }} d E_{\gamma} A\left(E_{\gamma}\right)
$$

Since the condition $\left|m_{B}\left(m_{B}-2 E_{\gamma}\right)\right| \gg \Lambda^{2}$ is fulfilled along the circle,
 the OPE coefficients can be calculated perturbatively, which gives

$$
\left.A\left(E_{\gamma}\right)\right|_{\text {circle }} \simeq \sum_{j}\left[\frac{F_{\text {polynomial }}^{(j)}\left(2 E_{\gamma} / m_{b}\right)}{m_{b}^{n_{j}}\left(1-2 E_{\gamma} / m_{b}\right)^{k_{j}}}+\mathcal{O}\left(\alpha_{s}\left(\mu_{\text {hard }}\right)\right)\right]\langle\bar{B}(\vec{p}=0)| Q_{\text {local operator }}^{(j)}|\bar{B}(\vec{p}=0)\rangle
$$

Thus, contributions from higher-dimensional operators are suppressed by powers of Λ / m_{b}.
At $\left(\Lambda / m_{b}\right)^{0}: \quad\langle\bar{B}(\vec{p})| \bar{b} \gamma^{\mu} b|\bar{B}(\vec{p})\rangle=2 p^{\mu} \quad \Rightarrow \quad \Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)=\Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right)+\mathcal{O}\left(\Lambda / m_{b}\right)$.
At $\left(\Lambda / m_{b}\right)^{1}$: Nothing! All the possible operators vanish by the equations of motion.
At $\left(\Lambda / m_{b}\right)^{2}: \quad\langle\bar{B}(\vec{p})| \bar{h} D^{\mu} D_{\mu} h|\bar{B}(\vec{p})\rangle=-2 m_{B} \lambda_{1}, \quad \lambda_{1}=(-0.27 \pm 0.04) \mathrm{GeV}^{2}$ from $\bar{B} \rightarrow X \ell^{-} \nu$ spectrum.

$$
\langle\bar{B}(\vec{p})| \bar{h} \sigma^{\mu \nu} G_{\mu \nu} h|\bar{B}(\vec{p})\rangle=6 m_{B} \lambda_{2}, \quad \lambda_{2} \simeq \frac{1}{4}\left(m_{B^{*}}^{2}-m_{B}^{2}\right) \simeq 0.12 \mathrm{GeV}^{2} .
$$

The HQET heavy-quark field $h(x)$ is defined by $h(x)=\frac{1}{2}(1+\not x) b(x) \exp \left(i m_{b} v \cdot x\right)$ with $v=p / m_{B}$.

The $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum for $E_{\gamma} \sim E_{\gamma}^{\max } \simeq \frac{M_{B}}{2}$ is dominated by contributions from "hard" radiative decays of the b-quark

The integrated branching ratio with a lower cut E_{0} on the photon energy $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}$ becomes very uncertain when E_{0} is too large $\left(m_{b}-2 E_{0} \sim \Lambda\right)$ or too small (when other than "hard" mechanisms of the photon production dominate). In a certain intermediate range of E_{0} :
$\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right)_{E_{\gamma}>E_{0}}+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{b}^{2}}\right)+\binom{$ small corrections due to }{ other than "hard" photons }. $E_{0}=1.6 \mathrm{GeV} \simeq \frac{m_{b}}{3}$ is usually chosen as default.

Gluon-to-photon conversion in the QCD medium

This is hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.

Suppression by Λ can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

A rough estimate using vacuum insertion approximation gives

$$
\Delta \Gamma / \Gamma \in[-2.8 \%,-0.3 \%] \quad\left(\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)\right) .
$$

[Lee, Neubert, Paz, hep-ph/0609224]
[Benzke, Lee, Neubert, Paz, arXiv:1003.5012]

However:

1. Contribution to the interference from scattering on the "sea" quarks vanishes in the $S U(3)_{\text {flavour }}$ limit because $Q_{u}+Q_{d}+Q_{s}=0$.
2. If the valence quark dominates, then the isospin-averaged $\Delta \Gamma / \Gamma$ is given by:

$$
\frac{\Delta \Gamma}{\Gamma} \simeq \frac{Q_{d}+Q_{u}}{Q_{d}-Q_{u}} \Delta_{0-}=-\frac{1}{3} \Delta_{0-}=\left(+0.2 \pm 1.9_{\text {stat }} \pm 0.3_{\text {sys }} \pm 0.8_{\text {ident }}\right) \%
$$

using the BABAR measurement (hep-ex/0508004) of the isospin asymmetry
$\Delta_{0-}=\left[\Gamma\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)-\Gamma\left(B^{-} \rightarrow X_{s} \gamma\right)\right] /\left[\Gamma\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)+\Gamma\left(B^{-} \rightarrow X_{s} \gamma\right)\right]$, for $E_{\gamma}>1.9 \mathrm{GeV}$.

Quark-to-photon conversion gives a soft s-quark and poorly interferes with the "hard" $b \rightarrow s \gamma g$ amplitude.

Charm loops with soft gluons only

M.B. Voloshin, Phys. Lett. B 397 (1997) 275 [hep-ph/9612483];
A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, Phys. Lett. B 402 (1997) 167 [hep-ph/9702318];
Z. Ligeti, L. Randall and M.B. Wise, Phys. Lett. B 402 (1997) 178 [hep-ph/9702322];
A.K. Grant, A.G. Morgan, S. Nussinov and R.D. Peccei, Phys. Rev. D 56 (1997) 3151 [hep-ph/9702380];
G. Buchalla, G. Isidori and S.J. Rey, Nucl. Phys. B 511 (1998) 594 [hep-ph/9705253];
M. Benzke, S.J. Lee, M. Neubert and G. Paz, arXiv:1003.5012.

$$
\begin{aligned}
\frac{\Delta \Gamma}{\Gamma} & =\frac{-C_{7}\left(\mu_{b}\right)}{C_{2}\left(\mu_{b}\right)-\frac{1}{6} C_{1}\left(\mu_{b}\right)}\left\{\frac{\lambda_{2}}{9 m_{c}^{2}}-\frac{2 \rho_{L S}^{3}}{27 m_{b} m_{c}^{2}}+\mathcal{O}\left[\frac{\Lambda}{m_{b}} \sum_{n=3}^{\infty} b_{n}^{(1)}\left(\frac{m_{b} \Lambda}{m_{c}^{2}}\right)^{n}\right]\right. \\
& \left.+\mathcal{O}\left[\frac{\Lambda^{2}}{m_{b}^{2}} \sum_{n=2}^{\infty} b_{n}^{(2)}\left(\frac{m_{b} \Lambda}{m_{c}^{2}}\right)^{n}\right]+\mathcal{O}\left[\frac{\Lambda^{3}}{m_{b}^{3}}\right]+R\right\} .
\end{aligned}
$$

Λ is related to the soft gluon energy in the \bar{B} rest frame.
$R=$ (contribution from soft gluons with energies too high for convergence of the $b_{n}^{(k)}$-series).
The first $\left(\lambda_{2} / 9 m_{c}^{2}\right)$ term enhances $\mathcal{B}\left[\bar{B} \rightarrow X_{s} \gamma\right]$ by around 3%.
The remaining terms are estimated to give a contribution in the range $[-1.7,+4.0] \%$ (arXiv:1003.5012).

Annihilation of $c \bar{c}$ in a heavy $(\bar{c} s)(\bar{q} c)$ state

Heavy \Leftrightarrow Above the $D \bar{D}$ production threshold
Long-distance \Rightarrow Annihilation amplitude is suppressed with respect to the open-charm decay due to the order Λ^{-1} distance between c and \bar{c}. By analogy to the B-meson decay constant $f_{B} \sim \Lambda\left(\Lambda / m_{b}\right)^{1 / 2}$, we may expect that the suppression factor scales like $(\Lambda / M)^{3 / 2}, \quad$ where $M \sim 2 m_{c}, 2 E_{\gamma}, m_{b}$.

Hard gluon \Leftrightarrow Suppression by α_{s} of the interference with (non-soft)

Altogether: $\mathcal{O}\left(\alpha_{s}(\Lambda / M)^{3 / 2}\right)$.

To stay on the safe side, assume $\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)$ for numerical error estimates.

This type of amplitude interferes with the leading term but receives an additional Λ / M suppression (at least) due to participation of the S-quark in the hard annihilation.

Summary

- Given the present consistency of measurements and SM calculations, observing clean signals of new physics in $\bar{B} \rightarrow X_{s} \gamma$ is unlikely, even if the uncertainties were reduced by factors of 2 on both sides. However, achieving such a reduction is worth an effort, as it would lead to strengthening constraints on most popular beyond-SM theories (e.g. MSSM with MFV).
- New perturbative NNLO results are coming soon. This is going to improve the m_{c}-interpolation. No BLM approximation at $m_{c}=0$ will be necessary any more.
- Non-perturbative uncertainty remains at the 5% level. However, making use of the $m_{b} \Lambda / m_{c}^{2}$ expansions whenever possible may lead to a reduction of this error.

BACKUP SLIDES

Interpolation in m_{c}

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\underset{\text { normalization }}{X}\left[\underset{\text { perturbative }}{P\left(E_{0}\right)}+\underset{\text { non-perturbative }}{\left.N\left(E_{0}\right)\right]}\right.
$$

Expansion of $P\left(E_{0}\right)$:
$P=\underbrace{P^{(0)}+\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}\left(P_{1}^{(1)}+P_{2}^{(1)}(r)\right)+\left(\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}\right)^{2}\left(P_{1}^{(2)}\right.}_{\text {known }}+P_{2}^{(2)}(r)+\underbrace{P_{3}^{(2)}(r)}_{\text {known }})$
$P_{1}^{(1)}, P_{3}^{(2)} \sim C_{i}^{(0)} C_{j}^{(1)}, \quad P_{2}^{(1)}, P_{2}^{(2)} \sim C_{i}^{(0)} C_{j}^{(0)}, \quad P_{1}^{(2)} \sim\left(C_{i}^{(0)} C_{j}^{(2)}, C_{i}^{(1)} C_{j}^{(1)}\right)$
Moreover: $\quad P_{2}^{(2)}=A n_{f}+B=-\frac{3}{2}\left(11-2 / 3 n_{f}\right) A+\frac{33}{2} A+B=P_{2}^{(2) \beta_{0}}+P_{2}^{(2) \mathrm{rem}}$

The complete $P_{2}^{(2)}$ has been calculated only for $r \gg \frac{1}{2}$.

The NNLO corrections $P_{k}^{(2)}$ as functions of $\quad r=m_{c}\left(m_{c}\right) / m_{b}^{1 S}$

Dotted: exact,
Interpolation:
$P_{2}^{(2) \mathrm{rem}}(r)=x_{1}+x_{2} P_{2}^{(1)}(r)+x_{3} r \frac{d}{d r} P_{2}^{(1)}(r)+x_{4} P_{2}^{(2) \beta_{0}}(r)+x_{5}\left|A_{\mathrm{NLO}}(r)\right|^{2}$
The coefficients x_{k} are determined from the asymptotic behaviour at large r and from the requirement that either
(a) $P_{2}^{(2) \mathrm{rem}}(0)=0$,
or
(b) $\quad P_{1}^{(2)}+P_{2}^{(2) \mathrm{rem}}(0)+P_{3}^{(2)}(0)=0$,
or
(c) $\quad P_{2}^{(2) \mathrm{rem}}(0)=\left[P_{2}^{(2) \mathrm{rem}}(0)\right]_{77}$.

The average of (a) and (b) is chosen to determine the central value of the NNLO branching ratio. The difference between these two cases is used to estimate the interpolation ambiguity.

The m_{c}-dependence of $P_{2}^{(2) \mathrm{rem}}=C_{i}^{(0)}\left(\mu_{b}\right) C_{j}^{(0)}\left(\mu_{b}\right) K_{i j}^{(2) \mathrm{rem}}\left(\mu_{b}, E_{0}\right)$. Example: $\quad K_{77}^{(2) \mathrm{rem}}(2.5 \mathrm{GeV}, 1.6 \mathrm{GeV})$ as a function of m_{c} / m_{b} :

Value at $m_{c}=0: \quad$ Blokland et al., hep-ph/0506055 ($c \bar{c}$ production included). Large- m_{c} asymptotics: Steinhauser, MM, hep-ph/0609241.
 Interpolation:

Renormalization scale dependence of $\mathcal{B}\left(\bar{B} \rightarrow X_{S} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}$

"Central" values:

$$
\begin{aligned}
\mu_{0} & =160 \mathrm{GeV} \\
\mu_{b} & =2.5 \mathbf{G e V} \\
\mu_{c} & =1.5 \mathbf{G e V}
\end{aligned}
$$

Evaluation of the master integrals I_{k}.

(from the Ph.D. thesis of T. Schutzmeier)
(i) Generalization to the off-shell case $z \equiv \frac{p^{2}}{m_{b}^{2}} \neq 1$
(ii) Automatic derivation (with the help of IBP) of differential equations of the form:

$$
\frac{d}{d z} I_{n}=\Sigma_{k} w_{n k}(z, \epsilon) I_{k}
$$

where $w_{n k}$ are rational functions of their arguments.
(iii) Establishing initial conditions from expansions around $z=0$ that involve massless integrals only (apart from massive tadpoles).
(iv) Evolving to the vicinity of $z=1$ using precise numerical solutions to the differential equations.

The evolution goes either in the upper or in the lower part of the complex z-plane to bypass spurious singularities of $w_{n k}$ on the real axis. Path-independence of the final results serves as a test.
(v) Matching with expansions around $z=1$, assuming their form $\sum c_{p q}(1-z)^{p} \ln ^{q}(1-z)$ (with unknown coefficients $c_{p q}$). This is necessary only if numerical instabilities occur at $z=1$.

Example of z-dependence (the $\mathcal{O}\left(\epsilon^{0}\right)$ part of

