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Information on electroweak-scale physics in the b→ sγ transition
is encoded in an effective low-energy local interaction:

γ

−→
b s

C7

Basic properties:

• Sensitivity to new physics at scales (a few)×O(100 GeV) with the present th/exp accuracy, even

in models with Minimal Flavour Violation (MFV). For instance, charged Higgs (THDM-II) effects

for MH = 500 (1000) GeV exceed 35% (14%) in the electroweak-scale coupling C7(µ0),

and 18% (7%) in the inclusive B̄ → Xs γ decay rate.

• Perturbative calculability of the inclusive rate

Γ(B̄ → Xs γ)Eγ>E0
= Γ(b→ X

p
s γ)Eγ>E0

+






non-perturbative effects

∼ (2± 5)%

see Benzke et al., arXiv:1003.5012






provided E0 is large (E0 ∼ mb/2) but not too close to the endpoint (mb − 2E0 ≫ ΛQCD).

• The known/estimated NNLO O(α2
s) contributions to the partonic rate are ∼ O(10%).

An uncertainty of ±3% is assumed for the unknown part.
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Combination of the results and extrapolation of the
integrated rates to E0 = 1.6 GeV are performed
in the same step, to minimize model-dependence.

Non-perturbative cutoff-related TH uncertainties in
the integrated rate become small for E0 ∼ 1.6 GeV.

Shape functions (e.g.): [A. Kagan, M. Neubert, hep-ph/9805303],

[Z. Ligeti, I. W. Stewart, F.J. Tackmann,

arXiv:0807.1926].

DGE model: [J.R. Andersen, E. Gardi, hep-ph/0609250].

Fixed-order O
(
αsΛ

2

m2
b

)

: [T. Ewerth, P. Gambino, S. Nandi,

arXiv:0911.2175].



Results of the SM calculations:

B(B̄ → Xsγ)NNLO
Eγ>1.6 GeV =







(3.15 ± 0.23) × 10−4, hep-ph/0609232, using the 1S scheme,

(3.26 ± 0.24) × 10−4,
following the kin scheme analysis of

arXiv:0805.0271, but mc(mc)
2loop

rather than mc(mc)
1loop.

Experimental world averages:

B(B̄ → Xsγ)EXP
Eγ>1.6 GeV =







(3.55 ± 0.26) × 10−4, [HFAG, winter 2010],

(3.50 ± 0.17) × 10−4,
[Artuso, Barberio, Stone,

arXiv:0902.3743].

⇒ Clean signals of new physics — unlikely.
(even after reducing the uncertainties by factors of 2 on both sides)

Constraints on new physics — certainly.



Inclusive B̄ → Xsγ in the SM:

B(B̄ → Xsγ)Eγ>1.6 GeV =







(3.15 ± 0.23) × 10−4, MM et al., hep-ph/0609232,
using the 1S scheme.

(3.26 ± 0.24) × 10−4,
following the kinetic scheme analysis

of P. Gambino and P. Giordano

in arXiv:0805.0271.

Contributions to the total TH uncertainty:

5% non-perturbative O
(
αsΛ
mb

)

, O
(
m2
bΛ

4

m6
c

)

, O
(

Λ3

mbm
2
c

)

,

︸ ︷︷ ︸

?

3% parametric (αs(MZ), Bexp
semileptonic, mc & C, . . . ).

2.0% 1.6% 1.1% (1S)
2.5% (kin)

3% mc-interpolation ambiguity (to be reduced soon),

3% higher order O(α3
s),

Their sum in quadrature (∼ 7%) is close to the current experimental error.



Decoupling of W , Z, t, H0 ⇒ effective weak interaction Lagrangian:

Lweak ∼ Σ Ci(µb)Qi
where

Q2 = b s
c c

= (s̄LγµcL)(c̄Lγ
µbL), from b W s

c c

, C2(µb) ≃ 1

Q7 = b s

γ

∼ (s̄Lσ
µνbR)Fµν, C7(µb) ≃ −0.3

Q8 = b s

g

∼ (s̄Lσ
µνT abR)Ga

µν, C8(µb) ≃ −0.2

Q1 differs from Q2 only by color structure.

Q3,. . . , Q6 – other 4-quark operators with small Wilson coefficients Ci(µ).

All the Ci(µ) are known up to O(α2
s) (NNLO) in the SM.

[Bobeth, MM, Urban, 2000], [MM, Steinhauser, 2004], [Gorban, Haisch, 2005], [Gorban, Haisch, MM, 2005], [Czakon, Haisch, MM, 2007].



Examples of SM diagrams for the matching of C7(µ0)

LO:
[Inami, Lim, 1981]

γ γ

u, c, t u, c, t W± W±

b W± s b u, c, t s

NLO:
[Adel, Yao, 1993]

γ

u, c, t
b s

W±

NNLO:
[Steinhauser, MM, 2004]

s

u, c, t

b

W±

γNNLO method:
• Taylor expansion in the off-shell external momenta is applied before integration.

• The UV and spurious IR divergences are regulated dimensionally.

• ⇒ In the effective theory, only tree-level diagrams survive (tree vertices and UV counterterms).
The UV renormalization constants are known from former anomalous-dimension calculations.

• All the 1/ǫ poles cancel in the matching equation, i.e. in the difference between the effective theory
and the full SM Green functions.

• At the 3-loop level, the difference mt −MW is taken into account with the help of expansions in yn

and (1 − y2)n up to n = 8, where y = MW/mt.



Resummation of large logarithms
(

αs ln
M2
W

m2
b

)n

in the b→ sγ amplitude.

RGE for the Wilson coefficients: µ
d

dµ
Cj(µ) = Ci(µ)γij(µ)

The anomalous dimension matrix γij is found from the effective theory renormalization constants, e.g.:

Z22 Z27 Z87

LO

[Gaillard, Lee, 1974] [Grinstein et al., 1990] [Shifman et al., 1978]
[Altarelli, Maiani, 1974] [Grigjanis et al., 1988]

NLO

[Altarelli et al., 1981] [Chetyrkin, MM, Münz, 1997] [MM, Münz, 1995]
[Buras, Weisz, 1990]

NNLO

[Gorbahn, Haisch, 2004] [Czakon, Haisch, MM, 2006] [Gorbahn, Haisch, MM, 2005]

∼ 2 × 104
diagrams,

−4% effect in the BR

All the Wilson coefficients
C1(µb), . . . , C8(µb)
are now known at the NNLO
in the SM.



Perturbative evaluation of Γ(b→ Xp
sγ) at µb ∼

mb
2 .

Γ(b→ Xp
sγ)

Eγ>E0

=
G2
Fm

5
bαem

32π4
|V ∗
tsVtb|

2
8∑

i,j=1

Ci(µb)Cj(µb)Gij(E0, µb)

|C1,2(µb)| ∼ 1, |C3,4,5,6(µb)| < 0.07,

C7(µb) ∼ −0.3, C8(µb) ∼ −0.15.LO: Gij = δi7δj7 ⇔b s

γ

7
b s b

γ

7 7

NLO: The most important Gij (i, j = 1, 2, 7, 8) are known since 1996.
{

[Greub, Hurth, Wyler, 1996]
[Ali, Greub, 1991-1995]

The remaining Gij are known since 2002.
{

[Buras, Czarnecki, MM, Urban, 2002]
[Pott, 1995]

NNLO: Only i, j = 1, 2, 7, 8 have been considered so far.

G77 is
fully known: + + . . .







[Blokland et al., 2005]
[Melnikov, Mitov, 2005]
[Asatrian et al., 2006-2007]

7 7

7 7

G78 is

fully known: + + . . . [Asatrian et al., arXiv:1005.5587]
8

7

7 8

G88 and G28 (G18): Two-particle cuts are known (just |NLO|2).

Three- and four-particle cuts are known in the BLM approximation only:
{

[Ferroglia, Haisch, 2007, unpublished]
[Poradziński, MM, 2010, to be published]



G22: + + + . . .
(and analogous
G11 & G12)

2 2 2 2 2 2

c c c c c c

Two-particle cuts Three- and four-particle cuts are known in the BLM
are known (just |NLO|2). approximation only. [Ligeti, Luke, Manohar, Wise, 1999]

No singularity at the endpoint Eγ = mb/2 appears.

Analogous NLO corrections are not big (+3.6%).

G27: + + + . . .
(and analogous G17) 2 7 2 7 2 7

c c c

︸ ︷︷ ︸

mc = 0: [Boughezal, Czakon, Schutzmeier, to be published] mc = 0: [Czakon, Huber, Schutzmeier]

[T. Schutzmeier, Ph.D. thesis, 2010] in progress...
O(200) massive 4-loop on-shell master integrals.

︸ ︷︷ ︸

The mc ≫ mb/2 limit is known [MM, Steinhauser, 2006]

The BLM approximation is known for arbitrary mc

{
[Bieri, Greub, Steinhauser, 2003]
[Ligeti, Luke, Manohar, Wise, 1999]

Non-BLM correction to G27 needs to be interpolated in mc.

Its vanishing at mc = 0 has been assumed so far.

Beyond BLM, diagrams with massive quark loops on gluon lines are known for all the relevant Gij
[Boughezal, Czakon, Schutzmeier, 2007], [Asatrian, Ewerth, Gabrielyan, Greub, 2007], [Ewerth, 2008].



Energetic photon production in charmless decays of the B̄-meson
(Eγ ∼>

mb

3 ≃ 1.6 GeV) [see MM, arXiv:0911.1651]

A. Without long-distance charm loops:
1. Hard 2. Conversion 3. Collinear 4. Annihilation

s

(qq̄ 6= cc̄)
q̄ q

s s s
Dominant, well-controlled. O(αsΛ/mb), (−1.6 ± 1.2)%. ∼ −0.2% or (+0.8 ± 1.1)%. Exp. π0, η, η′, ω subtracted.

[Benzke, Lee, Neubert, Paz, 2010] [Kapustin,Ligeti,Politzer, 1995] Perturbatively ∼ 0.1%.
[Benzke, Lee, Neubert, Paz, 2010]

B. With long-distance charm loops:

5. Soft 6. Boosted light cc̄ 7. Annihilation of cc̄ in a heavy (c̄s)(q̄c) state
gluons state annihilation
only (e.g. ηc, J/ψ, ψ′)

c̄
c̄ c c̄ c c̄ c

c

s s s s

O(Λ2/m2
c), ∼ +3.1%. Exp. J/ψ subtracted (< 1%). O(αs(Λ/M)2) O(αsΛ/M)

[Voloshin, 1996], [...], Perturbatively (including hard): ∼ +3.6%. M ∼ 2mc, 2Eγ, mb.
[Buchalla, Isidori, Rey, 1997] e.g. B[B− → DsJ(2457)− D∗(2007)0 ] ≃ 1.2%,

[Benzke, Lee, Neubert, Paz, 2010]: add (+1.1 ± 2.9)% B[B0 → D∗(2010)+ D̄∗(2007)0K−] ≃ 1.2%.



The “hard” contribution to B̄ → Xsγ
J. Chay, H. Georgi, B. Grinstein PLB 247 (1990) 399.
A.F. Falk, M. Luke, M. Savage, PRD 49 (1994) 3367.

Goal: calculate the inclusive sum ΣXs

∣
∣C7(µb)〈Xsγ|O7|B̄〉 + C2(µb)〈Xsγ|O2|B̄〉 + ...

∣
∣2

γ γ
q q

B̄ B̄

7 7

Im{ } ≡ ImA

The “77” term in this sum is purely “hard”. It is related
via the optical theorem to the imaginary part of the elastic
forward scattering amplitude B̄(~p = 0)γ(~q) → B̄(~p = 0)γ(~q):

When the photons are soft enough, m2
Xs

= |mB(mB − 2Eγ)| ≫ Λ2 ⇒ Short-distance dominance ⇒ OPE.

However, the B̄ → Xsγ photon spectrum is dominated by hard photons Eγ ∼ mb/2.

Once A(Eγ) is considered as a function of arbitrary complex Eγ,
ImA turns out to be proportional to the discontinuity of A
at the physical cut. Consequently,

ImEγ

1 Emax
γ ReEγ [GeV]

≃ 1
2mB

∫ Emax

γ

1 GeV

dEγ ImA(Eγ) ∼

∮

circle

dEγ A(Eγ).

Since the condition |mB(mB − 2Eγ)| ≫ Λ2 is fulfilled along the circle,
the OPE coefficients can be calculated perturbatively, which gives

A(Eγ)|
circle

≃
∑

j

[

F
(j)
polynomial(2Eγ/mb)

m
nj

b (1 − 2Eγ/mb)kj
+ O (αs(µhard))

]

〈B̄(~p = 0)|Q
(j)
local operator|B̄(~p = 0)〉.

Thus, contributions from higher-dimensional operators are suppressed by powers of Λ/mb.

At (Λ/mb)
0: 〈B̄(~p)|b̄γµb|B̄(~p)〉 = 2pµ ⇒ Γ(B̄ → Xsγ) = Γ(b→ Xparton

s γ) + O(Λ/mb).

At (Λ/mb)
1: Nothing! All the possible operators vanish by the equations of motion.

At (Λ/mb)
2: 〈B̄(~p)|h̄DµDµh|B̄(~p)〉 = −2mBλ1, λ1 = (−0.27 ± 0.04)GeV2 from B̄ → Xℓ−ν spectrum.

〈B̄(~p)|h̄σµνGµνh|B̄(~p)〉 = 6mBλ2, λ2 ≃
1
4

(
m2

B∗ −m2
B

)
≃ 0.12 GeV2.

The HQET heavy-quark field h(x) is defined by h(x) = 1
2(1 + v/)b(x) exp(imb v · x) with v = p/mB.



The B̄ → Xsγ photon spectrum for Eγ ∼ Emax
γ ≃ MB

2
is dominated

by contributions from ”hard” radiative decays of the b-quark
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Fig. 13 from arXiv:0807.1926 by Z. Ligeti, I. Stewart and F. Tackmann.

The integrated branching ratio with a lower cut E0 on the photon energy B(B̄ → Xsγ)Eγ>E0

becomes very uncertain when E0 is too large (mb − 2E0 ∼ Λ) or too small (when other than

”hard” mechanisms of the photon production dominate). In a certain intermediate range of E0:

Γ(B̄ → Xsγ)Eγ>E0 = Γ(b→ Xparton
s γ)Eγ>E0 + O

(
Λ2

m2
b

)

+
(

small corrections due to
other than ”hard” photons

)

.

E0 = 1.6 GeV ≃ mb
3

is usually chosen as default.



Gluon-to-photon conversion in the QCD medium

This is hard gluon scattering on the valence quark or a “sea” quark that produces
an energetic photon. The quark that undergoes this Compton-like scattering
is assumed to remain soft in the B̄-meson rest frame to ensure effective
interference with the leading “hard” amplitude. Without interference
the contribution would be negligible (O(α2

sΛ
2/m2

b)).

Suppression by Λ can be understood as originating from dilution of the target
(size of the B̄-meson ∼ Λ−1).

A rough estimate using vacuum insertion approximation gives

∆Γ/Γ ∈ [−2.8%,−0.3%] (O(αsΛ/mb)).
[ Lee, Neubert, Paz, hep-ph/0609224]

[ Benzke, Lee, Neubert, Paz, arXiv:1003.5012]

However:

1. Contribution to the interference from scattering on the ”sea” quarks vanishes

in the SU (3)flavour limit because Qu +Qd +Qs = 0.

2. If the valence quark dominates, then the isospin-averaged ∆Γ/Γ is given by:

∆Γ
Γ ≃

Qd+Qu
Qd−Qu

∆0− = −1
3∆0− =

(
+0.2 ± 1.9stat ± 0.3sys ± 0.8ident

)
%,

using the BABAR measurement (hep-ex/0508004) of the isospin asymmetry

∆0− = [Γ(B̄0 → Xsγ) − Γ(B− → Xsγ)]/[Γ(B̄0 → Xsγ) + Γ(B− → Xsγ)],

for Eγ > 1.9 GeV.

Quark-to-photon conversion gives a soft s-quark and poorly interferes with the ”hard” b→ sγg amplitude.



Charm loops with soft gluons only

c̄ c
M.B. Voloshin, Phys. Lett. B 397 (1997) 275 [hep-ph/9612483];
A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, Phys. Lett. B 402 (1997) 167 [hep-ph/9702318];
Z. Ligeti, L. Randall and M.B. Wise, Phys. Lett. B 402 (1997) 178 [hep-ph/9702322];
A.K. Grant, A.G. Morgan, S. Nussinov and R.D. Peccei, Phys. Rev. D 56 (1997) 3151 [hep-ph/9702380];
G. Buchalla, G. Isidori and S.J. Rey, Nucl. Phys. B 511 (1998) 594 [hep-ph/9705253];
M. Benzke, S.J. Lee, M. Neubert and G. Paz, arXiv:1003.5012.

c̄ c

Q1 or Q2 Q7

〈B̄| |B̄〉

∆Γ

Γ
=

−C7(µb)

C2(µb) −
1
6C1(µb)







λ2

9m2
c
−

2ρ3
LS

27mbm
2
c

+ O




Λ

mb

∞∑

n=3

b
(1)
n

(
mbΛ

m2
c

)n




+ O




Λ2

m2
b

∞∑

n=2

b
(2)
n

(
mbΛ

m2
c

)n


 + O

[

Λ3

m3
b

]

+R






.

Λ is related to the soft gluon energy in the B̄ rest frame.

R = (contribution from soft gluons with energies too high for convergence of the b
(k)
n -series).

The first (λ2/9m
2
c) term enhances B[B̄ → Xsγ] by around 3%.

The remaining terms are estimated to give a contribution in the range [−1.7,+4.0]% (arXiv:1003.5012).



Annihilation of cc̄ in a heavy (c̄s)(q̄c) state

c̄ c

s

Heavy ⇔ Above the DD̄ production threshold

Long-distance ⇒ Annihilation amplitude is suppressed with respect to the

open-charm decay due to the order Λ−1
distance between

c and c̄. By analogy to the B-meson decay constant

fB ∼ Λ(Λ/mb)
1/2

, we may expect that the suppression

factor scales like (Λ/M)3/2, whereM ∼ 2mc, 2Eγ, mb.

Hard gluon ⇔ Suppression by αs of the interference with
(non-soft)

Altogether: O
(
αs(Λ/M)3/2

)
.

To stay on the safe side, assume O (αsΛ/mb) for numerical error estimates.

c̄

c

s

This type of amplitude interferes with the leading term but receives an additional

Λ/M suppression (at least) due to participation of the s-quark in the hard

annihilation.



Summary

• Given the present consistency of measurements and SM calculations,
observing clean signals of new physics in B̄ → Xsγ is unlikely,
even if the uncertainties were reduced by factors of 2 on both sides.
However, achieving such a reduction is worth an effort,
as it would lead to strengthening constraints
on most popular beyond-SM theories (e.g. MSSM with MFV).

• New perturbative NNLO results are coming soon.
This is going to improve the mc-interpolation.
No BLM approximation at mc = 0 will be necessary any more.

• Non-perturbative uncertainty remains at the 5% level. However,

making use of the mbΛ/m2
c expansions whenever possible may lead

to a reduction of this error.



BACKUP SLIDES



Interpolation in mc

B(B̄ → Xsγ)
Eγ>E0

= X [ P (E0) + N (E0) ]
normalization perturbative non-perturbative

Expansion of P (E0):

P = P (0)+
αs(µb)

4π

(

P
(1)
1 + P

(1)
2 (r)

)

+
(
αs(µb)

4π

)2 (

P
(2)
1 + P

(2)
2 (r) + P

(2)
3 (r)

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

known known

P
(1)
1 , P

(2)
3 ∼ C

(0)
i C

(1)
j , P

(1)
2 , P

(2)
2 ∼ C

(0)
i C

(0)
j , P

(2)
1 ∼

(

C
(0)
i C

(2)
j , C

(1)
i C

(1)
j

)

Moreover: P
(2)
2 = Anf +B = −3

2(11 − 2/3nf)A + 33
2 A +B = P

(2)β0
2 + P

(2)rem
2

P
(2)β0
2 known for all r

The complete P
(2)
2 has been calculated only for r ≫ 1

2.

r =
mc(mc)

m1S
b

c c
q



The NNLO corrections P
(2)
k as functions of r = mc(mc)/m

1S
b
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(a) P
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1

See hep-ph/0609241

Dotted: exact, Solid: small-r expansions, Dashed: leading large-r asymptotics.

Interpolation:

P
(2)rem
2 (r) = x1+x2 P

(1)
2 (r)+x3 r

d
drP

(1)
2 (r)+x4 P

(2)β0
2 (r)+x5|ANLO(r)|2

The coefficients xk are determined from the asymptotic behaviour at large r
and from the requirement that either (a) P

(2)rem
2 (0) = 0,

or (b) P
(2)
1 + P

(2)rem
2 (0) + P

(2)
3 (0) = 0,

or (c) P
(2)rem
2 (0) =

[

P
(2)rem
2 (0)

]

77
.

The average of (a) and (b) is chosen to determine the central value of the NNLO branching ratio.

The difference between these two cases is used to estimate the interpolation ambiguity.



The mc-dependence of P
(2)rem
2 = C

(0)
i (µb)C

(0)
j (µb)K

(2)rem
ij (µb, E0).

Example: K
(2)rem
77 (2.5 GeV, 1.6 GeV) as a function of mc/mb:

0.2 0.4 0.6 0.8 1

100

110

120

130

140

150

1%
in BR

large mc

asymptotics

↑ mc/mb
exp.
range

charm

Value at mc = 0: Blokland et al., hep-ph/0506055 (cc̄ production included).

Large-mc asymptotics: Steinhauser, MM, hep-ph/0609241.

Interpolation: “ “ “ (cc̄ production included).

interp.

exact

Exact b→ Xsγ: Asatrian et al, hep-ph/0611123 (cc̄ production excluded).

Exact b→ Xueν̄ : Pak, Czarnecki, arXiv:0803.0960 (cc̄ production included).



Renormalization scale dependence of B(B̄ → Xsγ)Eγ>1.6 GeV
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“Central” values:

µ0 = 160 GeV

µb = 2.5 GeV

µc = 1.5 GeV



Evaluation of the master integrals Ik. (e.g.: )

(from the Ph.D. thesis of T. Schutzmeier)

(i) Generalization to the off-shell case z ≡ p2

m2
b
6= 1

(ii) Automatic derivation (with the help of IBP) of differential equations of the form:

d
dz In = Σk wnk(z, ǫ) Ik

where wnk are rational functions of their arguments.

(iii) Establishing initial conditions from expansions around z = 0 that involve massless integrals only
(apart from massive tadpoles).

(iv) Evolving to the vicinity of z = 1 using precise numerical solutions to the differential equations.

The evolution goes either in the upper or in the lower part of the complex z-plane to bypass spurious
singularities of wnk on the real axis. Path-independence of the final results serves as a test.

(v) Matching with expansions around z = 1, assuming their form Σ cpq (1 − z)p lnq(1 − z)
(with unknown coefficients cpq). This is necessary only if numerical instabilities occur at z = 1.



Example of z-dependence (the O(ǫ0) part of ):


