

The trace anomaly

and the coupling

of QCD to gravity

Roberta Armíllís

University of Salento & INFN, Lecce

QCD@Work - International Workshop on QCD – Martina Franca, 20-23 June 2010 -

Papers and collaborators

- R. A., C. Corianò, L. Delle Rose

"Conformal Anomalies and the Gravitational Effective Action: The TJJ Correlator for a Dirac Fermion"

Phys.Rev.D81:085001,2010, arXiv:0910.3381 [hep-ph]

- R. A., C. Corianò, L. Delle Rose
"Anomaly Poles as Common Signatures of Chiral and Conformal Anomalies"
Phys.Lett.B682:322-327,2009, arXiv:0909.4522 [hep-ph]

- R. A., C. Corianò, L. Delle Rose "Trace Anomaly, Massless Scalars and the Gravitational Coupling of QCD" arXiv:1005.4173 [hep-ph]

- R. A., C. Corianò, L. Delle Rose, L. Manni "The Trace Anomaly and the Gravitational Coupling of an Anomalous U(1)" arXiv:1003.3930 [hep-ph]

- R. A., C. Corianò, L. Delle Rose, M. Guzzi, A. Mariano
"The Effective Actions of Pseudoscalar and Scalar Particles in Theories with Gauge and Conformal Anomalies" arXiv:1001.5240 [hep-ph] – to be published in Fortschritte der Physik

Outline

The context is the one of an EFT of gravity

Evidence of new massless degreees of freedom, not contained in the Einstein-Hilbert action Explicit analytic perturbative computations on specific correlators

The trace anomaly

The trace of the stress tensor obeys at the classical level

$$T^{\mu}_{\ \mu}{}^{(cl)} \equiv g_{\mu\nu}T^{\mu\nu}{}^{(cl)} = -m\bar{\psi}\psi$$

At the quantum level this symmetry under global scale transformations cannot be maintained

[Duff, NPB 125 (1977), Capper, Duff, Halpern, PRD 10 (1974)]

We end up with a well defined TRACE ANOMALY

also for a vanishing mass fermion

$$\langle T^{\mu}_{\ \mu} \rangle_{A} \Big|_{m=0} = -\frac{e^{2}}{24\pi^{2}} F_{\mu\nu} F^{\mu\nu}$$

The role of the trace anomaly

The trace anomaly provides additional terms to be included in the classical Einstein-Hilbert classical action

$$S_{\rm eff}[g] = S_{\rm EH}[g] + S_{\rm anom}[g]$$

The trace anomaly implies the existence of

new massless scalar degrees of freedom

[Antoniadis, Mazur, Mottola, New J.Phys.9:11,2007 Giannotti, Mottola, PRD79 (2009), R.A., Corianò, Delle Rose, Phys.Lett.B682:322-327,2009, R.A., Corianò, Delle Rose, arXiv:0910.3381 to appear in PRD]

The non local effective action

Starting from the trace anomaly

$$T^{\mu}_{\mu} = b F + b' \left(E - \frac{2}{3} \Box R \right) + b'' \Box R + c F^{a \, \mu\nu} F^{a}_{\mu\nu}$$

Riegert found this non local gravitational effective action

$$S_{anom}[g, A] = \frac{1}{8} \int d^4x \sqrt{-g} \int d^4x' \sqrt{-g'} \left(E - \frac{2}{3} \Box R \right)_x \Delta_4^{-1}(x, x') \left[2b F + b' \left(E - \frac{2}{3} \Box R \right) + 2c F_{\mu\nu} F^{\mu\nu} \right]_{x'}$$
[Riegert, PLB 134 (1984)]

by solving the variational equation satisfied by the trace of the energy momentum tensor

The local formulation

The **non local** effective action can be recast in a **local** form after the introduction of two auxiliary fields

$$S_{anom}[g,A;\varphi,\psi'] = \int d^4x \sqrt{-g} \left[-\psi' \Box \varphi - \frac{R}{3} \psi' + \frac{c}{2} F_{\alpha\beta} F^{\alpha\beta} \varphi \right]$$

satisfying the equations

$$\psi' \equiv b \Box \psi ,$$

$$\Box \psi' = \frac{c}{2} F_{\alpha\beta} F^{\alpha\beta}$$

$$\Box \varphi = -\frac{R}{3} .$$

[Antoniadis, Mazur, Mottola, New J.Phys.9:11 (2007) Giannotti, Mottola, PRD79 (2009)]

The local formulation

The **non local** effective action can be recast in a **local** form after the introduction of two auxiliary fields

$$S_{anom}[g,A;\varphi,\psi'] = \int d^4x \sqrt{-g} \left[-\psi'\Box\varphi - \frac{R}{3}\psi' + \frac{c}{2}F_{\alpha\beta}F^{\alpha\beta}\varphi \right]$$

Expanding around flat space the local formulation of Riegert's action can be

$$S_{anom}[g,A] \to -\frac{c}{6} \int d^4x \sqrt{-g} \int d^4x' \sqrt{-g'} R_x \Box_{x,x'}^{-1} [F_{\alpha\beta} F^{\alpha\beta}]_{x'}$$

Given a solution of a variational equation it is mandatory to check

whether the solution is indeed justified by a perturbative expansion

The coupling of QCD to gravity

In the weak gravitational field limit

$$\mathcal{L}_{int} = -\frac{1}{2}\kappa \, h^{\mu\nu} T_{\mu\nu}$$

where

$$T_{\mu\nu} = -g_{\mu\nu}\mathcal{L}_{QCD} - F^{a}_{\mu\rho}F^{a\rho}_{\nu} - \frac{1}{\xi}g_{\mu\nu}\partial^{\rho}(A^{a}_{\rho}\partial^{\sigma}A^{a}_{\sigma}) + \frac{1}{\xi}(A^{a}_{\nu}\partial_{\mu}(\partial^{\sigma}A^{a}_{\sigma}) + A^{a}_{\mu}\partial_{\nu}(\partial^{\sigma}A^{a}_{\sigma}))$$

$$+ \frac{i}{4}\left[\overline{\psi}\gamma_{\mu}(\overrightarrow{\partial}_{\nu} - igT^{a}A^{a}_{\nu})\psi - \overline{\psi}(\overleftarrow{\partial}_{\nu} + igT^{a}A^{a}_{\nu})\gamma_{\mu}\psi + \overline{\psi}\gamma_{\nu}(\overrightarrow{\partial}_{\mu} - igT^{a}A^{a}_{\mu})\psi$$

$$- \overline{\psi}(\overleftarrow{\partial}_{\mu} + igT^{a}A^{a}_{\mu})\gamma_{\nu}\psi\right] + \partial_{\mu}\overline{\omega}^{a}(\partial_{\nu}\omega^{a} - gf^{abc}A^{c}_{\nu}\omega^{b}) + \partial_{\nu}\overline{\omega}^{a}(\partial_{\mu}\omega^{a} - gf^{abc}A^{c}_{\mu}\omega^{b})$$

The <Tgg> correlator is the first (leading) order contribution to the infinite sum of the <Tⁿgg> correlators in which the anomalous effective action is expanded

The perturbative expansion 1.

The perturbative expansion is obtained by taking into account all the possible diagrams in which a graviton (initial state) and two gluons (final state) appear.

[R.A., Coríanò, Delle Rose, arXív: 1005.4173]

The perturbative expansion 2.

[R.A., Coríanò, Delle Rose, arXív: 1005.4173]

The perturbative expansion 3.

All the diagrams are computed analytically by means of tensor reduction in dimensional regularization

Ward identities for the correlator

1) for the conservation of the energy-momentum tensor

 $k^{\mu} \langle T_{\mu\nu}(k) A^{a}_{\alpha}(p) A^{b}_{\beta}(q) \rangle_{trunc} = q_{\mu} D^{-1}_{\alpha\mu}(p) g_{\beta\nu} + p_{\mu} D^{-1}_{\beta\mu}(q) g_{\alpha\nu} - q_{\nu} D^{-1}_{\alpha\beta}(p) - p_{\nu} D^{-1}_{\alpha\beta}(q) g_{\alpha\nu} - q_{\nu} D^{-1}_{\alpha\beta}(p) - p_{\nu} D^{-1}_{\alpha\beta}(q) g_{\alpha\nu} - q_{\nu} D^{-1}_{\alpha\beta}(p) - p_{\nu} D^{-1}_{\alpha\beta}(q) g_{\alpha\nu} - q_{\nu} D^{-1}_{\alpha\beta}(p) g_{\alpha\nu} -$

$$D_{\alpha\beta}^{-1}(p) = (p^2 g_{\alpha\beta} - p_\alpha q_\beta) \Pi(p^2)$$

inverse gluon propagator

Ward identities for the correlator

1) for the conservation of the energy-momentum tensor

$$k^{\mu} \langle T_{\mu\nu}(k) A^{a}_{\alpha}(p) A^{b}_{\beta}(q) \rangle_{trunc} = q_{\mu} D^{-1}_{\alpha\mu}(p) g_{\beta\nu} + p_{\mu} D^{-1}_{\beta\mu}(q) g_{\alpha\nu} - q_{\nu} D^{-1}_{\alpha\beta}(p) - p_{\nu} D^{-1}_{\alpha\beta}(q)$$

2) for the trace of the energy-momentum tensor at zero momentum transfer

$$\langle T^{\mu}_{\mu}(0)A^{a}_{\alpha}(p)A^{b}_{\beta}(-p)\rangle_{trunc} = \left(2 - d + p \cdot \frac{\partial}{\partial p}\right)D^{-1}_{\alpha\beta}(p)$$

$$\langle T^{\mu}_{\mu}(0)A^{a}_{\alpha}(p)A^{b}_{\beta}(-p)\rangle_{trunc} = \left[\beta(g)\frac{\partial}{\partial g} - 2\gamma(g) + m(\gamma_{m}(g) - 1)\frac{\partial}{\partial m}\right]D^{-1}_{\alpha\beta}(p)$$

$$\beta(g) = \mu \frac{\partial g}{\partial \mu}, \qquad \gamma(g) = \mu \frac{\partial}{\partial \mu} \log \sqrt{Z_A}, \qquad m \gamma_m(g) = \mu \frac{\partial m}{\partial \mu}$$

Roberta Armillis - QCD@Work 2010 – Martina Franca, 22 June 2010

INF

Ward identities for the correlator

1) for the conservation of the energy-momentum tensor

$$k^{\mu} \langle T_{\mu\nu}(k) A^{a}_{\alpha}(p) A^{b}_{\beta}(q) \rangle_{trunc} = q_{\mu} D^{-1}_{\alpha\mu}(p) g_{\beta\nu} + p_{\mu} D^{-1}_{\beta\mu}(q) g_{\alpha\nu} - q_{\nu} D^{-1}_{\alpha\beta}(p) - p_{\nu} D^{-1}_{\alpha\beta}(q) g_{\alpha\nu} - q_{\nu} D^{-1}_{\alpha\beta}(p) - p_{\nu} D^{-1}_{\alpha\beta}(q) g_{\alpha\nu} - q_{\nu} D^{-1}_{\alpha\beta}(p) - p_{\nu} D^{-1}_{\alpha\beta}(q) g_{\alpha\nu} - q_{\nu} D^{-1}_{\alpha\beta}(p) g_{\alpha\nu} -$$

2) for the trace of the energy-momentum tensor at zero momentum transfer

$$\langle T^{\mu}_{\mu}(0)A^{a}_{\alpha}(p)A^{b}_{\beta}(-p)\rangle_{trunc} = \left(2 - d + p \cdot \frac{\partial}{\partial p}\right)D^{-1}_{\alpha\beta}(p)$$

3) generalized Ward identity

$$p^{\alpha}q^{\beta}\langle T_{\mu\nu}(k)A^{a}_{\alpha}(p)A^{b}_{\beta}(q)\rangle_{trunc} = 0.$$

These three Ward identities turn out to be satisfied in dimensional regularization

[R.A., Coríanò, Delle Rose, arXív: 1005.4173]

Expansion of the whole amplitude

The sum of the quark and gluon/ghost contributions is written as

$$\Gamma^{\mu\nu\alpha\beta}(p,q) = \Gamma^{\mu\nu\alpha\beta}_{g}(p,q) + \Gamma^{\mu\nu\alpha\beta}_{q}(p,q) = \sum_{i=1}^{3} \Phi_{i}(s,0,0) \,\delta^{ab} \phi^{\mu\nu\alpha\beta}_{i}(p,q)$$
form factors tensor structures

The massless pole evidence

The sum of the quark and gluon/ghost contributions is written as

$$\Gamma^{\mu\nu\alpha\beta}(p,q) = \Gamma^{\mu\nu\alpha\beta}_g(p,q) + \Gamma^{\mu\nu\alpha\beta}_q(p,q) = \sum_{i=1}^3 \Phi_i(s,0,0) \,\delta^{ab} \phi_i^{\mu\nu\alpha\beta}(p,q)$$

form factors

tensor structures

The contribution of the trace of the energy momentum tensor is given by

$$g_{\mu\nu} \Gamma^{\mu\nu\alpha\beta}(p,q) = 3 s \Phi_1(s;0,0,0) u^{\alpha\beta}(p,q) = -2 \frac{\beta(g)}{g} u^{\alpha\beta}(p,q)$$

The relevant form factor shows a massless pole

$$\Phi_1(s,0,0) = -\frac{g^2}{72\pi^2 s} 2n_f - 11C_A$$

$$\beta(g) = \frac{g^3}{16\pi^2} \left(-\frac{11}{3} C_A + \frac{2}{3} n_f \right)$$
$$u^{\alpha\beta}(p,q) \equiv (p \cdot q) g^{\alpha\beta} - q^{\alpha} p^{\beta}$$

[R.A., Coríanò, Delle Rose, arXív: 1005.4173]

The massless pole in the effective action

The effective action expanded around the flat space is

$$S_{anom}[g,A] \rightarrow \left(-\frac{c}{6}\right) \int d^4x \sqrt{-g} \int d^4x' \sqrt{-g'} R_x \square_{x,x'}^{-1} [F_{\alpha\beta}F^{\alpha\beta}]_{x'}$$

and now the direct computation of the massless pole contribution yields

$$S_{pole} = -\frac{c}{6} \int d^4x \, d^4y \, R^{(1)}(x) \, \Box^{-1}(x,y) \, F^a_{\alpha\beta} \, F^{a\,\alpha\beta}$$

$$= \frac{1}{3} \frac{g^3}{16\pi^2} \left(-\frac{11}{3} \, C_A + \frac{2}{3} \, n_f \right) \int d^4x \, d^4y \, R^{(1)}(x) \, \Box^{-1}(x,y) \, F_{\alpha\beta} F^{\alpha\beta}$$

[R.A., Coríanò, Delle Rose, arXív: 1005.4173]

$$R_x^{(1)} \equiv \partial^x_\mu \, \partial^x_\nu \, h^{\mu\nu} - \Box \, h, \qquad h = \eta_{\mu\nu} \, h^{\mu\nu}$$

linearized expression of the Ricci scalar

Conclusions and ...

The non-local gravitational effective action can be rewritten in a local form in terms of two auxiliary fields whose interpretation is still an open issue

The flat metric expansion of the effective action exhibits a massless scalar pole, confirmed by the perturbative expansion

These long-range gravitational interactions modify the IR region of gravity

... perspectives

Further studies on the relation between the cosmological constant value and the trace anomaly

Phenonemological studies in the context of the Arkani-Hamed, Dimopoulos, Dvali model of TeV-scale gravity for collider processes involving gravitons

Extension of the coupling of gravity to the whole SM

Backup slides

Definitions and conventions

