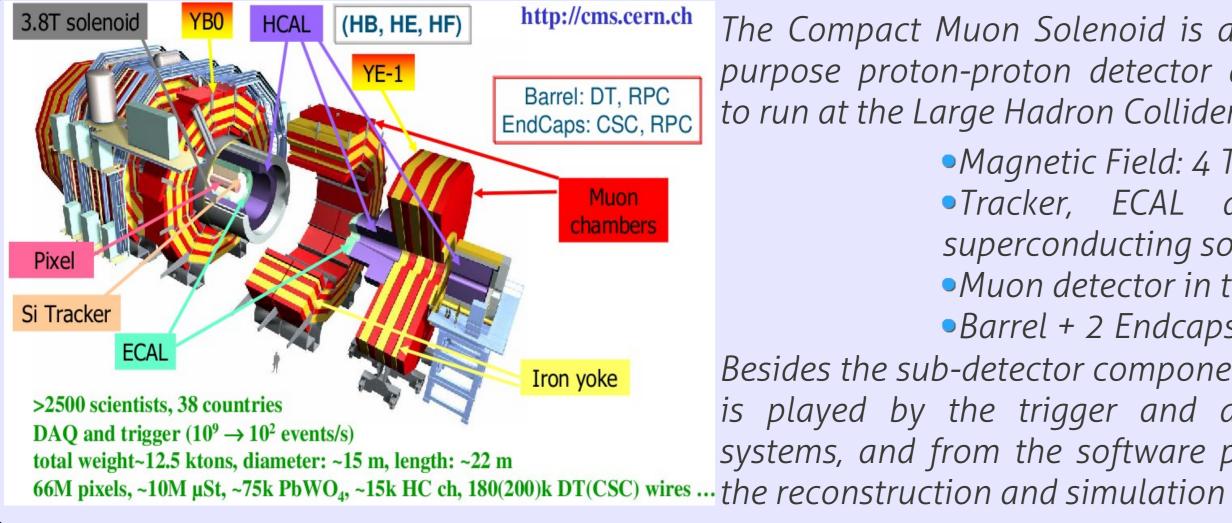



# Reconstruction and selection of $Z \rightarrow \tau \tau \rightarrow \mu + \tau - jet + \upsilon's$ decays at the CMS experiment



Letizia Lusito (University & INFN Bari, CERN) On behalf of the CMS Collaboration






## QCD@Work - International Workshop on QCD - Theory and Experiment, 20 – 23 June 2010, Martina Franca (Italy)

 $Z \rightarrow \tau \tau$  decays can be considered as a "standard candle" process for the commissioning of the tau reconstruction as well as a test bench for analogous  $H \rightarrow \tau \tau$  decays. We have implemented a technique for the selection and reconstruction of  $Z \rightarrow \tau \tau \rightarrow \mu + \tau$ -jet + v's events optimized to the first measurement of the Z  $\rightarrow \tau \tau$  production cross-section at the Compact Muon Solenoid experiment using first LHC collision data. The analysis has been

performed considering simulated p-p collision data at the centre-of-mass energy of  $\sqrt{s}$  = 10 TeV corresponding to an integrated luminosity of 200 pb<sup>-1</sup>. Also we have established a data-driven method, the "Template Fitting" aimed at the estimation of background contribution to the final visible mass peak of Z boson

## The Compact Muon Solenoid



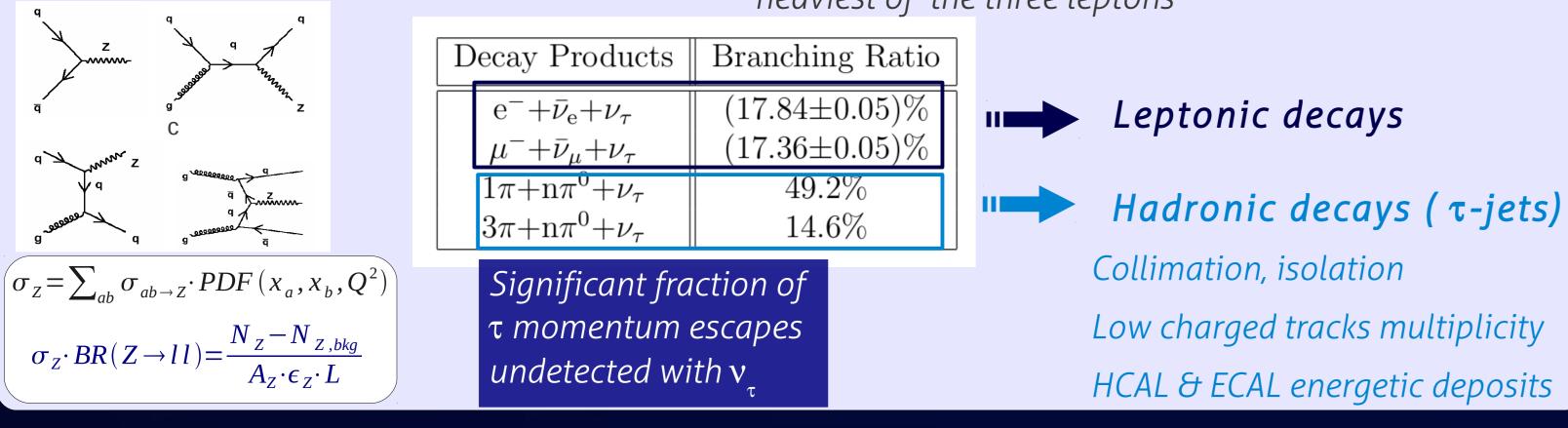
The Compact Muon Solenoid is a general purpose proton-proton detector designed to run at the Large Hadron Collider •*Magnetic Field: 4 T (3.8 T at the start-up)* 

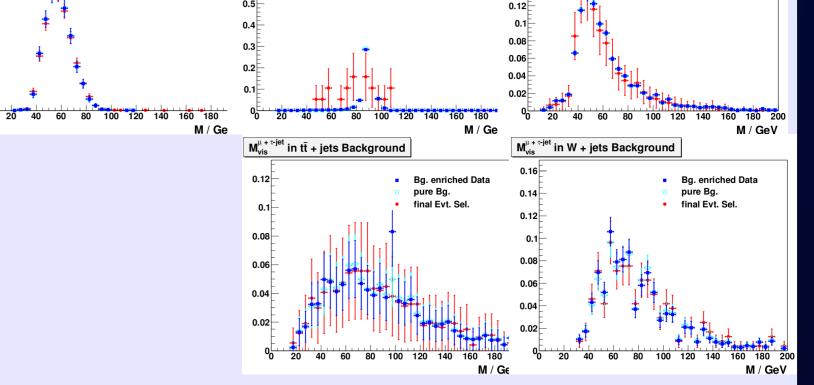
•Tracker, ECAL and HCAL inside the superconducting solenoid •Muon detector in the return yoke • Barrel + 2 Endcaps + forward detectors Besides the sub-detector components, a major role is played by the trigger and data acquisition systems, and from the software point of view by

## Selection final results:

| Cut<br>gen. Phase-Space                                              | $Z \rightarrow \tau \tau$<br>23878 | QCD<br>2938604     | $t\bar{t}$ +jets<br>25640 | W+jets<br>445242 | $Z(\rightarrow ee)+jets$<br>732 | $Z \rightarrow \mu \mu$<br>122893 |                                | 400 | sim. 200pb <sup>-1</sup> | $Z \rightarrow \mu^+ \mu^-$                                   |
|----------------------------------------------------------------------|------------------------------------|--------------------|---------------------------|------------------|---------------------------------|-----------------------------------|--------------------------------|-----|--------------------------|---------------------------------------------------------------|
| mu15    isoMu11 Trigger                                              | 14599                              | 2280552            | 15439                     | 325421           | 75                              | 115736                            |                                | -   | √s=10TeV                 | $Z \rightarrow e^+ e^- + jets$                                |
| Vertex                                                               | 14599                              | 2280552            | 15439                     | 325421           | 75                              | 115736                            | Events expected                | 350 | Vs=101ev                 | W + jets                                                      |
| $p(\chi^2_{vtx}) > 0.01$                                             | 14581                              | 2280416            | 15438                     | 325326           | 75                              | 115578                            | LVCIILS CAPECICU               |     |                          | TT + jets                                                     |
| $-25 < z_{vtx} < +25 \text{ cm}$                                     | 14581                              | 2280416            | 15438                     | 325326           | 75                              | 115578                            | from 7 > c c                   | E   |                          | QCD                                                           |
| 1 global Muon                                                        | 12785                              | 2045261            | 10397                     | 316790           | 68                              | 6021                              | from $Z \rightarrow \tau \tau$ | 300 |                          |                                                               |
| $ \eta^{\mu}  < 2.1$                                                 | 12735                              | 2039853            | 10374                     | 315441           | 68                              | 5942                              |                                |     |                          | $\boxtimes \blacksquare \mathbf{Z} \to \tau^{\star} \tau^{-}$ |
| $p_T^{\mu} > 15 \text{ GeV/c}$                                       | 9654                               | 2011583            | 9888<br>9888              | 295449           | 63                              | 5675<br>5673                      | and different                  |     | PV1                      |                                                               |
| $\mu$ and $\tau$ -jet not overlapping<br>$ \eta^{\tau-jet}  < 2.1$   | 9654<br>9622                       | 2011583<br>2009483 | 9888<br>9888              | 295449<br>294769 | 63<br>63                        | 5581                              | 55                             | 250 |                          |                                                               |
| $p_T^{\tau-jet} > 20 \text{ GeV/c}$                                  | 9622<br>5847                       | 1081183            | 9663                      | 294709<br>112673 | 57                              | 1996                              | backgrounds                    | -   |                          |                                                               |
| Muon Track iso.                                                      | 3490                               | 19768              | 2984                      | 61991            | 2                               | 1183                              | e a chigh e annais             | F   |                          | Visible invariant                                             |
| Muon ECAL iso.                                                       | 3092                               | 2109               | 2329                      | 53085            | -                               | 1037                              | processes                      | 200 |                          |                                                               |
| Muon $\pi$ -Veto                                                     | 3055                               | 2049               | 2303                      | 52522            | _                               | 1023                              | processes                      | E   |                          | mass of μ+τ-jet                                               |
| Muon Track d <sub>0</sub>                                            | 3053                               | 2004               | 2302                      | 52522            | -                               | 1023                              | (expectations                  | 450 |                          | παςς σι μι τησε                                               |
| $\tau$ -jet lead. track find.                                        | 2852                               | 1669               | 2246                      | 47586            | -                               | 908                               | lentectations                  | 150 |                          |                                                               |
| $\tau$ -jet lead. track $p_T$                                        | 2687                               | 1527               | 2197                      | 44613            | -                               | 869                               | $f_{ar} = 200 \text{ mb}^{-1}$ |     |                          | (v's from $\tau$ decays                                       |
| $\tau$ -jet Track iso.                                               | 1930                               | 292                | 786                       | 9458             | -                               | 567                               | for 200 pb <sup>-1</sup> )     | 100 |                          | - 5                                                           |
| $\tau$ -jet ECAL iso.                                                | 1728                               | 202                | 569                       | 6827             | -                               | 539                               | 5                              | 100 |                          | not included)                                                 |
| $\tau$ -jet 1  3-Prong                                               | 1541                               | 83                 | 375                       | 2897             | -                               | 502                               |                                | F   |                          | moe meedided)                                                 |
| $Charge(\tau-jet) = \pm 1$                                           | 1530                               | 71                 | 351                       | 2512             | -                               | 499                               |                                | 50  |                          |                                                               |
| $(\mu, \tau$ -jet) Veto                                              | 1522                               | 71                 | 348                       | 2504             | -                               | 39                                |                                | 50  |                          |                                                               |
| $\Delta R_{\mu,\tau-jet} > 0.7$                                      | 1522                               | 71                 | 345                       | 2496             | -                               | 39                                |                                | F   |                          |                                                               |
| $\operatorname{Charge}_{\mu} + \operatorname{Charge}_{\tau-jet} = 0$ | 1500                               | 38                 | 307                       | 1959             | -                               | 25                                |                                | 0   |                          |                                                               |
| $M_T (\mu-MET) < 50 \text{ GeV/c}^2$                                 | 1433                               | 37                 | 99                        | 596              | -                               | 12                                | S/S+B = 78%                    |     | 20 40 60 80              | 100 120 140 160 180 20                                        |
| $P_{\zeta} - 1.5^* P_{\zeta}^{vis} > -20 \text{ GeV}$                | 1330                               | 30                 | 59                        | 275              | -                               | 10                                | <u>5/5/0 – 70%</u>             | 0   |                          |                                                               |
|                                                                      |                                    |                    |                           |                  |                                 |                                   |                                |     |                          | M / GeV                                                       |

## Z boson production and tau properties


**Z production** occurs by  $q\bar{q} \rightarrow Z$ *qg* or *gg* scattering are subdominant


*Tau:* mass 1.777 GeV/c<sup>2</sup>, lifetime 290.10<sup>-15</sup> s heaviest of the three leptons

## The data-driven background estimation

•Contribution of  $Z \rightarrow \tau \tau$  and all background determined by control samples (obtained through dedicated selections in different phase *space regions)* •Template of a background process defined as the visible  $\mu$  +  $\tau$ -jet mass distribution of events in the phase space region corresponding to the control sample relative to that process, normalized to unit area •Template of  $Z \rightarrow \tau \tau$  obtained from  $Z \rightarrow \mu \mu$ events substituting reconstructed muons with simulated tau decay products

|   | M <sub>vis</sub> <sup>µ+τ-j</sup> | <sup>et</sup> in $Z \rightarrow \tau^* \tau^*$ Signal | $M_{vis}^{\mu + \tau - jet}$ in | $h Z \rightarrow \mu^{+} \mu^{-}$ Background            |                       | D Background |                               |
|---|-----------------------------------|-------------------------------------------------------|---------------------------------|---------------------------------------------------------|-----------------------|--------------|-------------------------------|
|   | 0.25                              | Bg. enriched Data                                     | 0.8                             | <ul> <li>Bg. enriched Data</li> <li>pure Bg.</li> </ul> | - 0.22<br>0.2<br>0.18 |              | Bg. enriched Data<br>pure Bg. |
| 0 | 0.2                               | • final Evt. Sel.                                     | 0.7                             | • final Evt. Sel.                                       | 0.16                  | · ·          | final Evt. Sel.               |





## Muon and tau lepton reconstruction

*muon stations + tracker hits* Muon identification: calorimeter and segment compatibility probabilities Muon isolation: isolated muons coming from Z can be discriminated from  $\mu$ 's in soft from K and  $\pi$  by jets calculating the sum of energy deposits and track  $p_{\tau}$  in a cone around muon track direction at vertex. Muon contribution to the sum can be vetoed

**Global reconstruction (GM)**:

**PFJet Axis** lead charged hadron isolation sign annulus

Particle Flow algorithm: complete event description with the reconstruction and *identification of all stable particles* **Preselection:** *PF*-*jet with a leading charged* hadron, definition of matching, signal and isolation cones:  $a \tau$ -jet is defined isolated if no charged hadron or photon is found in the isolation annulus

**Fixed or Shrinking cone definitions**: *τ*-jet s become more collimated at high energies and *better recovery of three prongs decays* Discriminators against Muons, Electrons

## Results of the template fitting method

QCD TTplusJets

– Zmumu

— fitted Σ

Ztautau

final Evt. Sel.

WplusJets

Good agreement between the fit of the 300 sum of simulated events 250 of  $Z \rightarrow \tau \tau$  and other 200 background events which pass the selection <sup>150</sup> aimed to the cross 100 section measurement and BR in the channel 100 120 140 160 180 200  $Z \rightarrow \tau \tau \rightarrow \mu + \tau$ -jet ("pseudo" 20 40 60 80 data, black points) with template distributions (coloured curves)

Efficient selection of control samples with good а compromise between purity and statistics

 Visible Mass not correlated with selection criteria used used in the determination of phase space regions  $\rightarrow$  could be used as the template distribution *•*Bias in the template shapes due contamination of control to diTauMvis12 samples by other background processes and signal itself is negligible

## Data samples and event selection

## Conclusions

|                      |                      |                |         |         |          | Ve         |
|----------------------|----------------------|----------------|---------|---------|----------|------------|
| rocesses             | σ(pb)                | e <sub>G</sub> | Events  | L(pb⁻¹) | Gen MC   | Мu         |
| Ζ→ ττ                | 1086                 | 1              | 1210500 | 1115    | Pythia6  | Та         |
| Ζ→μμ                 | 1233                 | 0.509          | 501025  | 798     | Pythia6  |            |
| μ X (QCD)<br>high pT | 5091x10⁵             | 0.00034        | 6089180 | 50      | Pythia6  | wi<br>Mu   |
| μ X (QCD)<br>low pT  | 5156x10 <sup>7</sup> | 0.0023         | 5021444 | 0.04    | Pythia6  | Pic<br>Tro |
| bar+jets             | 317                  | -              | 946644  | 2986    | MadGraph | 1 (        |
| → lv)+jets           | 40000                | -              | 9745661 | 244     | MadGraph | Ch         |
| →ee)+jets            | 3700                 | -              | 1262816 | 341     | MadGraph | Dis        |

HLT\_Mu15 || HLT\_IsoMu11 ertex reconstruction and quality cuts

uon kinematic: p<sub>τ</sub>>15 GeV/c , ΙηΙ<2.1, 1 Global muon

au kinematic:  $p_{\tau}$ >20 GeV/c,  $|\eta|<2.1$  not overlapping ith the  $\mu$ 

uon Iso value<1 in a cone with  $\Delta R=0.6$ ion rejection (muon compatibility) rack transverse impact parameter < 2 cm or 3 signal charged tracks in  $\tau$ -jet harge of  $\tau$ -jet = ± 1 iscriminator against muons  $\Delta R (muon, \tau-jet) > 0.7, M_{\tau} (muon, MET) < 50, \zeta cut$ 

The reconstruction and selection techniques presented here demonstrate the capability of CMS of correctly and efficiently identify tau leptons decaying leptonically (in muons) as well as tau-jets with good efficiency and good background rejection (significance S/S+B = 0.78). This achievement can serve as a basis for other analysis with tau in final state and are been currently tested and optimized in real pp collision events.

Moreover, the data-driven estimation of background via the template fitting method can be fully applied to determine the contributions of signal and background processes to the Z boson visible mass. Possible biases in the shape templates are well under control. The results obtained are found to be in agreement with MC predictions. The combined statistical and systematics uncertainties are of the order of 10%.

#### **References:**

L. Lusito, "Reconstruction and selection of  $Z \rightarrow \tau \tau \rightarrow \mu + \tau$ -jet + v's decays at the CMS experiment", CMS TS 2010/006