GERDA

Phase II status report

József Janicskó Csáthy for the GERDA collaboration

0vββ decay

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v}_{e}$$

allowed and observed

$$(T_{1/2}^{0\nu})^{-1} = F^{0\nu} \cdot |\mathcal{M}^{0\nu}|^2 \cdot \langle m_{\beta\beta} \rangle^2$$
$$\langle m_{\beta\beta} \rangle^2 = \left| \sum_i U_{ei}^2 m_{\nu i} \right|^2$$

 $M^{0\nu}$ - nuclear matrix element $F^{0\nu}$ - phase space integral depends on the Q value $\langle m_{\beta\beta} \rangle$ - effective neutrino mass

Technische Universität München

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

violates lepton number conservation

GERDA at Gran Sasso

GERDA status

- Status of Phase I: data taking ended with 21.6 kg · yr exposure: from Nov. 2011 to May 2013
- Result of Phase I: T^{0v}_{1/2} > 2.1 x 10²⁵ yr
- Goal of Phase II: background level of 0.001 cts/(keV kg yr) and 100 kg yr exposure
- Phase II strategy to reduce background: LAr scintillation light readout + pulse shape discrimination
- Phase II status: is in commissioning phase right now

GERDA Publications in 2015

- Still publishing *Phase I* results
- 6 articles + conference proceedings, ~4 more in the pipeline

LArGe: active background suppression using argon scintillation for the Gerda $0\nu\beta\beta$ -experiment *Eur. Phys. J. C 75 (2015) 506*

2vββ decay of 76Ge into excited states with GERDA Phase I J. Phys. G: Nucl. Part. Phys. 42 (2015) 115201

Results on ββ decay with emission of two neutrinos or Majorons in 76Ge from GERDA Phase I *Eur. Phys. J. C 75 (2015) 416*

Enhancement of light yield and stability of radio-pure tetraphenyl-butadiene based coatings for VUV light detection in cryogenic environments *JINST 10 (2015) P09009*

Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I *Eur. J. Phys. C 75 (2015) 255*

Production, characterization and operation of 76Ge enriched BEGe detectors in GERDA *EPJC 75 (2015) 39*

$2\nu\beta\beta$ decay into excited states

J. Phys. G: Nucl. Part. Phys. 42 (2015) 115201 (18pp)

- $2\nu\beta\beta + \gamma$: Coincidence between HPGe detectors
- $T_{1/2}(0^+ \rightarrow 0^+_1) > 3.7 \cdot 10^{23}$ yr. About 20 times better limits than in previous experiments
- Image of the week in September on IOPScience: http://jphysplus.iop.org/2015/09/28/image-of-the-week-the-thrill-of-the-chase/

energy [keV]

LAr - veto

Copper "shroud" with Tetratex reflector coated with TPB

Technische Universität München

• Production and installation in 2014

- some replaced in September 2015 All channels are working
- Low background SiPMs packaging done at TUM, SiPMs in die from Ketek GmbH.
 - After some difficulties All channels are working

LAr veto commissioning

- "Photo-electron" peaks recognisable in the amplitude spectrum - in both SiPMs and PMTs spectra
- Veto on one photo-electron in any channel
- After single channels calibrated and summed up: light yield: 50 - 60 p.e./ MeV - with ²²⁸Th source
- Count rate dominated by ³⁹Ar
- LAr -veto Suppression Factor tested with one detector string with ²²⁸Th and ²²⁶Ra sources

LAr veto commissioning

Suppression of:	Ge Anti- Coincidence	LAr-veto	PSD	LAr + PSD	Acceptance
²²⁸ Th	1.26 ± 0.01	97.9 ± 3.7	2.19 ± 0.01	344.6 ± 24.5	86.8%
²²⁶ Ra	1.26 ± 0.01	5.7 ± 0.2	2.98 ± 0.06	29.4 ± 2.5	89.9%

Detector Production

- \bullet Whole production chain from $^{\rm enr}GeO_2$ to BEGe diode organized by GERDA and tested with $^{\rm dep}Ge~({\rm JINST~8~P04018~2013})$
- Total gain 30 BEGes with 20.5 kg (58 % yield)
- Detector characterization in HADES underground facility, Belgium
- Exposure to cosmic rays reduced as much as possible:
 - Transport in shielded container
 - Storage and testing underground

GERDA

Phase II detector holders

- 30 new BEGe detectors need new holders
- New holder made of silicon plates
 - Silicon is cleaner
- 3x less copper than in the Phase I holder

Integration test July 2015

- In July 22 BEGe and 5 coaxial detectors mounted in 5 strings
- ~20 kg Germanium in GERDA
 - 15 BEGe + 4 coax was working: leakage current, contact problems
- Detector strings surrounded by nylon Mini-Shrouds coated with TPB
 - Reduces ⁴²K background
- 6 weeks of data recorded
 - ~1 kg/yr exposure & first background spectrum

Integration test July 2015

Calibration spectrum from detectors in one string

 Energy resolution of the BEGe detectors: 2.6 - 3.2 keV (at 2.6 MeV)

- $2\nu\beta\beta$ spectrum visible after only a month of data taking
- 42 K line is the strongest γ -line, count rate like in *Phase I*
- ³⁹Ar background dominant below 500 keV
- Background is within the expectations

Pulse Shape Discrimination

- Special calibration runs for PSD with strong sources (high stat.)
- PSD performed for both Coax. and BEGe detectors
- Achieved performance is similar to Phase I
- NN can be trained with events selected in coincidence with LArveto

Software

- LAr-veto and PSA included
- Tier3 OK, Tier4 being finalised
- First full production with the first background data
- Data production / monitoring performed in real time
- Blinding procedure at tier0 level was worked out

Ready for Phase II

Technische Universität München

Detector reprocessing

- 15 out of 30 BEGe detectors sent back to producer:
 - leakage current problems discovered in GS,
 - 12 are working in GERDA, 3 waiting for Al evaporation
- 5 out of 7 coax detectors had Al bonding pads evaporated on
 - 5 enriched + 1 natural Ge are working in GERDA
 - 2 enriched + 2 natural Ge coax waiting for evaporation
- Further delays caused by the Al evaporator
 - Since a few days is working again

Outlook

- Two commissioning runs resulted in about 2 kg · yr background data
 - background is good enough to start a physics run
- performance of the detectors is within the expectations
- performance of the LAr-veto is good
- preparation of the analysis is almost finished
- New commissioning run started with 7 strings this week !
 - 28 detectors mounted and working !
- arrival of additional detectors this year (7)
- we expect to collect physics data in 2016

